Free Access
Issue
ESAIM: M2AN
Volume 41, Number 1, January-February 2007
Page(s) 77 - 93
DOI https://doi.org/10.1051/m2an:2007008
Published online 26 April 2007
  1. A.D. Bandrauk and H. Shen, Exponential split operator methods for solving coupled time-dependent Schrödinger equations. J. Chem. Phys. 99 (1993) 1185–1193. [CrossRef] [Google Scholar]
  2. K. Beauchard, Local controllability of a 1D Schrödinger equation. J. Math. Pures Appl. 84 (2005) 851–956. [CrossRef] [MathSciNet] [Google Scholar]
  3. J. Bolte and H. Attouch, On the convergence of the proximal point algorithm for nonsmooth functions involving analytic features. Math. Program. (to appear). [Google Scholar]
  4. E. Brown and H. Rabitz, Some mathematical and algorithmic challenges in the control of quantum dynamics phenomena. J. Math. Chem. 31 (2002) 17–63. [CrossRef] [Google Scholar]
  5. A. Haraux, M.A. Jendoubi and O. Kavian, Rate of decay to equilibrium in some semilinear parabolic equations. J. Evol. Equ. 3 (2003) 463–484. [CrossRef] [MathSciNet] [Google Scholar]
  6. K. Ito and K. Kunisch, Optimal bilinear control of an abstract Schrödinger equation. SIAM J. Cont. Opt. (to appear). [Google Scholar]
  7. R. Judson and H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett 68 10 (1992) 1500–1503. [Google Scholar]
  8. S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels. Colloques internationaux du CNRS, Les équations aux dérivées partielles 117 (1963). [Google Scholar]
  9. S. Łojasiewicz, Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier 43 (1993) 1575–1595. [Google Scholar]
  10. Y. Maday and G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys 118 18 (2003) 8191–8196. [Google Scholar]
  11. Y. Maday, J. Salomon and G. Turinici, Discretely monotonically convergent algorithm in quantum control, in Proc. LHMNLC03 IFAC conference, Sevilla (2003) 321–324. [Google Scholar]
  12. Y. Maday, J. Salomon and G. Turinici, Monotonic time-discretized schemes in quantum control. Num. Math. 103 (2006) 323–338. [CrossRef] [Google Scholar]
  13. H. Rabitz, G. Turinici and E. Brown, Control of quantum dynamics: Concepts, procedures and future prospects, in Computational Chemistry, Special Volume (C. Le Bris Editor) of Handbook of Numerical Analysis, Vol. X, edited by Ph.G. Ciarlet, Elsevier Science B.V. (2003). [Google Scholar]
  14. J. Salomon, Limit points of the monotonic schemes in quantum control, in Proc. 44th IEEE Conference on Decision and Control, Sevilla (2005). [Google Scholar]
  15. S. Shi, A. Woody and H. Rabitz, Optimal control of selective vibrational excitation in harmonic linear chain molecules. J. Chem. Phys. 88 (1988) 6870–6883. [CrossRef] [Google Scholar]
  16. G. Strang, Accurate partial difference methods. I: Linear cauchy problems. Arch. Rat. Mech. An. 12 (1963) 392–402. [CrossRef] [Google Scholar]
  17. J. Szeftel, Absorbing boundary conditions for nonlinear Schrödinger equation. Num. Math. 104 (2006) 103–127. [CrossRef] [Google Scholar]
  18. D. Tannor, V. Kazakov and V. Orlov, Control of photochemical branching: Novel procedures for finding optimal pulses and global upper bounds, in Time Dependent Quantum Molecular Dynamics, J. Broeckhove, L. Lathouwers Eds., Plenum (1992) 347–360. [Google Scholar]
  19. T.N. Truong, J.J. Tanner, P. Bala, J.A. McCammon, D.J. Kouri, B. Lesyng and D.K. Hoffman, A comparative study of time dependent quantum mechanical wave packet evolution methods. J. Chem. Phys. 96 (1992) 2077–2084. [CrossRef] [Google Scholar]
  20. W. Zhu and H. Rabitz, A rapid monotonically convergent iteration algorithm for quantum optimal control over the expectation value of a positive definite operator. J. Chem. Phys. 109 (1998) 385–391. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you