Free Access
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 189 - 213
Published online 16 June 2007
  1. A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355–384. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Assaraf, M. Caffarel and A. Khelif, Diffusion Monte Carlo with a fixed number of walkers. Phys. Rev. E 61 (2000) 4566–4575. [CrossRef] [Google Scholar]
  3. E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: a Primer, in Handbook of Numerical Analysis, Special volume, Computational Chemistry, volume X, Ph.G. Ciarlet and C. Le Bris Eds., North-Holland (2003) 3–270. [Google Scholar]
  4. E. Cancès, B. Jourdain and T. Lelièvre, Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. Math. Mod. Methods Appl. Sci. 16 (2006) 1403–1440. [CrossRef] [Google Scholar]
  5. O. Cappé, R. Douc and E. Moulines, Comparison of Resampling Schemes for Particle Filtering, in 4th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia (2005). [Google Scholar]
  6. N. Chopin, Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32 (2004) 2385–2411. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Del Moral, Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004). [Google Scholar]
  8. P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft obstacles. Stochastic Anal. Appl. 22 (2004) 1175–1207. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Del Moral and L. Miclo, Branching and Interacting Particle Systems. Approximation of Feynman-Kac Formulae with Applications to Non-Linear Filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Mathematics 1729, Springer-Verlag (2000) 1–145. [Google Scholar]
  10. P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171–208. [CrossRef] [EDP Sciences] [Google Scholar]
  11. P. Glasserman, Monte Carlo methods in financial engineering. Springer-Verlag (2004). [Google Scholar]
  12. J.H. Hetherington, Observations on the statistical iteration of matrices. Phys. Rev. A 30 (1984) 2713–2719. [CrossRef] [MathSciNet] [Google Scholar]
  13. P.J. Reynolds, D.M. Ceperley, B.J. Alder and W.A. Lester, Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 77 (1982) 5593–5603. [CrossRef] [Google Scholar]
  14. M. Rousset, On the control of an interacting particle approximation of Schrödinger groundstates. SIAM J. Math. Anal. 38 (2006) 824–844. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Sorella, Green Function Monte Carlo with Stochastic Reconfiguration. Phys. Rev. Lett. 80 (1998) 4558–4561. [CrossRef] [Google Scholar]
  16. D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stochastic Anal. Appl. 8 (1990) 94–120. [Google Scholar]
  17. C.J. Umrigar, M.P. Nightingale and K.J. Runge, A Diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99 (1993) 2865–2890. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you