Free Access
Issue
ESAIM: M2AN
Volume 41, Number 2, March-April 2007
Special issue on Molecular Modelling
Page(s) 249 - 259
DOI https://doi.org/10.1051/m2an:2007021
Published online 16 June 2007
  1. D.R. Alcoba, F.J. Casquero, L.M. Tel, E. Perez-Romero and C. Valdemoro, Convergence enhancement in the iterative solution of the second-order contracted Schrödinger equation. Int. J. Quantum Chem. 102 (2005) 620–628. [CrossRef] [Google Scholar]
  2. M.D. Benayoun, A.Y. Lu and D.A. Mazziotti, Invariance of the cumulant expansion under 1-particle unitary transformations in reduced density matrix theory. Chem. Phys. Lett. 387 (2004) 485–489. [CrossRef] [Google Scholar]
  3. D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York (1982). [Google Scholar]
  4. S. Burer and C. Choi, Computational enhancements in low-rank semidefinite programming. Optim. Methods Soft. 21 (2006) 493–512. [CrossRef] [Google Scholar]
  5. S. Burer and R.D.C. Monteiro, Nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program. Ser. B 95 (2003) 329–357. [CrossRef] [Google Scholar]
  6. S. Burer and R.D.C. Monteiro, Local minima and convergence in low-rank semidefinite programming. Math. Program. Ser. A 103 (2005) 427–444. [CrossRef] [Google Scholar]
  7. L. Cohen and C. Frishberg, Hierarchy equations for reduced density matrices, Phys. Rev. A 13 (1976) 927–930. [Google Scholar]
  8. A.J. Coleman, Structure of fermion density matrices. Rev. Mod. Phys. 35 (1963) 668. [CrossRef] [Google Scholar]
  9. A.J. Coleman and V.I. Yukalov, Reduced Density Matrices: Coulson's Challenge. Springer-Verlag, New York (2000). [Google Scholar]
  10. F. Colmenero and C. Valdemoro, Approximating q-order reduced density-matrices in terms of the lower-order ones. 2. Applications. Phys. Rev. A 47 (1993) 979–985. [CrossRef] [PubMed] [Google Scholar]
  11. F. Colmenero and C. Valdemoro, Self-consistent approximate solution of the 2nd-order contracted Schrödinger equation. Int. J. Quantum Chem. 51 (1994) 369–388. [CrossRef] [Google Scholar]
  12. A.R. Conn, I.M. Gould and P.L. Toint, Trust-Region Methods. SIAM: Philadelphia (2000). [Google Scholar]
  13. C.A. Coulson, Present state of molecular structure calculations. Rev. Mod. Phys. 32 (1960) 170–177. [CrossRef] [MathSciNet] [Google Scholar]
  14. R.M. Erdahl, Representability. Int. J. Quantum Chem. 13 (1978) 697–718. [Google Scholar]
  15. R.M. Erdahl, Two algorithms for the lower bound method of reduced density matrix theory. Reports Math. Phys. 15 (1979) 147–162. [CrossRef] [Google Scholar]
  16. R.M. Erdahl and B. Jin, The lower bound method for reduced density matrices. J. Mol. Struc. (Theochem) 527 (2000) 207–220. [CrossRef] [Google Scholar]
  17. R. Fletcher, Practical Methods of Optimization. John Wiley and Sons, New York (1987). [Google Scholar]
  18. M. Fukuda, B.J. Braams, M. Nakata, M.L. Overton, J.K. Percus, M. Yamashita and Z. Zhao, Large-scale semidefinite programs in electronic structure calculation. Math. Program., Ser. B 109 (2007) 553. [Google Scholar]
  19. C. Garrod and J. Percus, Reduction of N-particle variational problem. J. Math. Phys. 5 (1964) 1756–1776. [CrossRef] [Google Scholar]
  20. G. Gidofalvi and D.A. Mazziotti, Boson correlation energies via variational minimization with the two-particle reduced density matrix: Exact N-representability conditions for harmonic interactions. Phys. Rev. A 69 (2004) 042511. [CrossRef] [Google Scholar]
  21. G. Gidofalvi and D.A. Mazziotti, Application of variational reduced-density-matrix theory to organic molecules. J. Chem. Phys. 122 (2005) 094107. [CrossRef] [PubMed] [Google Scholar]
  22. G. Gidofalvi and D.A. Mazziotti, Application of variational reduced-density-matrix theory to the potential energy surfaces of the nitrogen and carbon dimers. J. Chem. Phys. 122 (2005) 194104. [CrossRef] [PubMed] [Google Scholar]
  23. G. Gidofalvi and D.A. Mazziotti, Spin- and symmetry-adapted two-electron reduced-density-matrix theory. Phys. Rev. A 72 (2005) 052505. [CrossRef] [Google Scholar]
  24. G. Gidofalvi and D.A. Mazziotti, Potential energy surface of carbon monoxide in the presence and absence of an electric field using the two-electron reduced-density-matrix method. J. Phys. Chem. A 110 (2006) 5481–5486. [CrossRef] [PubMed] [Google Scholar]
  25. G. Gidofalvi and D.A. Mazziotti, Computation of quantum phase transitions by reduced-density-matrix mechanics. Phys. Rev. A 74 (2006) 012501. [CrossRef] [Google Scholar]
  26. J.R. Hammond and D.A. Mazziotti, Variational two-electron reduced-density-matrix theory: Partial 3-positivity conditions for N-representability. Phys. Rev. A 71 (2005) 062503. [CrossRef] [Google Scholar]
  27. J.R. Hammond and D.A. Mazziotti, Variational reduced-density-matrix calculations on radicals: a new approach to open-shell ab initio quantum chemistry. Phys. Rev. A 73 (2006) 012509. [CrossRef] [Google Scholar]
  28. J.R. Hammond and D.A. Mazziotti, Variational reduced-density-matrix calculation of the one-dimensional Hubbard model. Phys. Rev. A 73 (2006) 062505. [CrossRef] [Google Scholar]
  29. J.E. Harriman, Geometry of density matrices. II. Reduced density matrices and N-representability. Phys. Rev. A 17 (1978) 1257–1268. [CrossRef] [Google Scholar]
  30. T. Juhász and D.A. Mazziotti, Perturbation theory corrections to the two-particle reduced density matrix variational method. J. Chem. Phys. 121 (2004) 1201–1205. [CrossRef] [PubMed] [Google Scholar]
  31. W. Kutzelnigg and D. Mukherjee, Irreducible Brillouin conditions and contracted Schrödinger equations for n-electron systems. IV. Perturbative analysis. J. Chem. Phys. (2004) 120 7350–7368. [Google Scholar]
  32. P.O. Löwdin, Quantum theory of many-particle systems. 1. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configuration interaction. Phys. Rev. 97 (1955) 1474–1489. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.E. Mayer, Electron correlation. Phys. Rev. 100 (1955) 1579–1586. [CrossRef] [Google Scholar]
  34. D.A. Mazziotti, Contracted Schrödinger equation: Determining quantum energies and two-particle density matrices without wave functions. Phys. Rev. A 57 (1998) 4219–4234. [CrossRef] [Google Scholar]
  35. D.A. Mazziotti, Approximate solution for electron correlation through the use of Schwinger probes. Chem. Phys. Lett. 289 (1998) 419–427. [CrossRef] [Google Scholar]
  36. D.A. Mazziotti, Pursuit of N-representability for the contracted Schrödinger equation through density-matrix reconstruction. Phys. Rev. A 60 (1999) 3618–3626. [CrossRef] [Google Scholar]
  37. D.A. Mazziotti, Comparison of contracted Schrödinger and coupled-cluster theories. Phys. Rev. A 60 (1999) 4396–4408. [CrossRef] [Google Scholar]
  38. D.A. Mazziotti, Correlated purification of reduced density matrices. Phys. Rev. E 65 (2002) 026704. [CrossRef] [Google Scholar]
  39. D.A. Mazziotti, A variational method for solving the contracted Schrödinger equation through a projection of the N-particle power method onto the two-particle space. J. Chem. Phys. 116 (2002) 1239–1249. [CrossRef] [Google Scholar]
  40. D.A. Mazziotti, Variational minimization of atomic and molecular ground-state energies via the two-particle reduced density matrix. Phys. Rev. A 65 (2002) 062511. [CrossRef] [Google Scholar]
  41. D.A. Mazziotti, Solution of the 1,3-contracted Schrödinger equation through positivity conditions on the 2-particle reduced density matrix. Phys. Rev. A 66 (2002) 062503. [CrossRef] [Google Scholar]
  42. D.A. Mazziotti, Realization of quantum chemistry without wavefunctions through first-order semidefinite programming. Phys. Rev. Lett. 93 (2004) 213001. [CrossRef] [PubMed] [Google Scholar]
  43. D.A. Mazziotti, First-order semidefinite programming for the direct determination of two-electron reduced density matrices with application to many-electron atoms and molecules. J. Chem. Phys. 121 (2004) 10957–10966. [CrossRef] [PubMed] [Google Scholar]
  44. D.A. Mazziotti, Variational two-electron reduced-density-matrix theory for many-electron atoms and molecules: Implementation of the spin- and symmetry-adapted T2 condition through first-order semidefinite programming. Phys. Rev. A 72 (2005) 032510. [CrossRef] [Google Scholar]
  45. D.A. Mazziotti, Variational reduced-density-matrix method using three-particle N-representability conditions with application to many-electron molecules. Phys. Rev. A 74 (2006) 032501. [CrossRef] [Google Scholar]
  46. D.A. Mazziotti, Reduced-Density-Matrix with Application to Many-electron Atoms and Molecules, Advances in Chemical Physics 134, D.A. Mazziotti Ed., John Wiley and Sons, New York (2007). [Google Scholar]
  47. D.A. Mazziotti and R.M. Erdahl, Uncertainty relations and reduced density matrices: Mapping many-body quantum mechanics onto four particles. Phys. Rev. A 63 (2001) 042113. [CrossRef] [Google Scholar]
  48. M.V. Mihailović and M. Rosina, Excitations as ground-state variational parameters. Nucl. Phys. A130 (1969) 386. [Google Scholar]
  49. M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata and K. Fujisawa, Variational calculations of fermion second-order reduced density matrices by semidefinite programming algorithm. J. Chem. Phys. 114 (2001) 8282–8292. [CrossRef] [Google Scholar]
  50. M. Nakata, M. Ehara and H. Nakatsuji, Density matrix variational theory: Application to the potential energy surfaces and strongly correlated systems. J. Chem. Phys. 116 (2002) 5432–5439. [CrossRef] [Google Scholar]
  51. H. Nakatsuji, Equation for the direct determination of the density matrix. Phys. Rev. A 14 (1976) 41–50. [CrossRef] [Google Scholar]
  52. H. Nakatsuji and K. Yasuda, Direct determination of the quantum-mechanical density matrix using the density equation. Phys. Rev. Lett. 76 (1996) 1039–1042. [CrossRef] [PubMed] [Google Scholar]
  53. M. Nayakkankuppam, Solving large-scale semidefinite programs in parallel. Math. Program., Ser. B 109 (2007) 477–504. [Google Scholar]
  54. Y. Nesterov and A.S. Nemirovskii, Interior Point Polynomial Method in Convex Programming: Theory and Applications. SIAM: Philadelphia (1993). [Google Scholar]
  55. E. Polak, Optimization: Algorithms and Consistent Approximations. Springer-Verlag, New York (1997). [Google Scholar]
  56. J.H. Sebold and J.K. Percus, Model derived reduced density matrix restrictions for correlated fermions. J. Chem. Phys. 104 (1996) 6606–6612. [CrossRef] [Google Scholar]
  57. R.H. Tredgold, Density matrix and the many-body problem. Phys. Rev. 105 (1957) 1421–1423. [CrossRef] [MathSciNet] [Google Scholar]
  58. L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. 38 (1996) 49–95. [CrossRef] [MathSciNet] [Google Scholar]
  59. S. Wright, Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1997). [Google Scholar]
  60. K. Yasuda, and H. Nakatsuji, Direct determination of the quantum-mechanical density matrix using the density equation II. Phys. Rev. A 56 (1997) 2648–2657. [CrossRef] [Google Scholar]
  61. Z. Zhao, B.J. Braams, H. Fukuda, M.L. Overton and J.K. Percus, The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. J. Chem. Phys. 120 (2004) 2095–2104. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you