Free Access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 607 - 625
DOI https://doi.org/10.1051/m2an:2007027
Published online 02 August 2007
  1. G. Allaire, Shape optimization by the homogenization method. Applied Mathematical Sciences 146, Springer (2002). [Google Scholar]
  2. G. Allaire and R. Kohn, Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A Solids 12 (1993) 839–878. [Google Scholar]
  3. G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Sér. I 334 (2002) 1125–1130. [Google Scholar]
  4. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method, Internal report, n° 555, CMAP, École polytechnique. Control Cybern. 34 (2005) 59-80. [Google Scholar]
  5. H. Ammari, M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II - The full Maxwell equations. J. Math. Pures Appl. 80 (2001) 769–814. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern. 34 (2005) 119-138. [Google Scholar]
  7. G. Aubert and J.-F. Aujol, Optimal partitions, regularized solutions, and application to image classification. Appl. Anal. 84 (2005) 15–35. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Aubert and P. Kornprobst, Mathematical problems in image processing. Applied Mathematical Sciences 147, Springer-Verlag, New York (2002). [Google Scholar]
  9. J.-F. Aujol, G. Aubert and L. Blanc-Féraud, Wavelet-based level set evolution for classification of textured images. IEEE Trans. Image Process. 12 (2003) 1634–1641. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  10. M. Bendsoe, Optimal topology design of continuum structure: an introduction. Technical report, Department of Mathematics, Technical University of Denmark, Lyngby, Denmark (1996). [Google Scholar]
  11. M. Berthod, Z. Kato, S. Yu and J. Zerubia, Bayesian image classification using Markov random fields. Image Vision Comput. 14 (1996) 285–293. [CrossRef] [Google Scholar]
  12. C.A. Bouman and M. Shapiro, A multiscale random field model for Bayesian image segmentation. IEEE Trans. Image Process. 3 (1994) 162–177. [CrossRef] [PubMed] [Google Scholar]
  13. P.G. Ciarlet, Finite Element Method for Elliptic Problems. North Holland (2002). [Google Scholar]
  14. L. Cohen, E. Bardinet and N. Ayache, Surface reconstruction using active contour models. SPIE Int. Symp. Optics, Imaging and Instrumentation, San Diego California USA (July 1993). [Google Scholar]
  15. R. Dautray and J.-L. Lions, Analyse mathématique et calcul numérique pour les sciences et les techniques. Collection CEA, Masson, Paris (1987). [Google Scholar]
  16. X. Descombes, R. Morris and J. Zerubia, Some improvements to Bayesian image segmentation – Part one: modelling. Traitement du signal 14 (1997) 373–382. [Google Scholar]
  17. X. Descombes, R. Morris and J. Zerubia, Some improvements to Bayesian image segmentation – Part two: classification. Traitement du signal 14 (1997) 383–395. [Google Scholar]
  18. A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem of continuous dependance. Arch. Rational Mech. Anal. 105 (1989) 299–326. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: The elasticity case. SIAM J. Control Optim. 39 (1991) 17–49. [Google Scholar]
  20. L. Jaafar Belaid, M. Jaoua, M. Masmoudi and L. Siala, Image restoration and edge detection by topological asymptotic expansion. C. R. Acad. Sci. Paris. Ser. I Math. 342 (2006) 313–318. [Google Scholar]
  21. Z. Kato, Modélisations markoviennes multirésolutions en vision par ordinateur - Application à la segmentation d'images SPOT. Ph.D. thesis, INRIA, Sophia Antipolis, France (1994). [Google Scholar]
  22. M. Masmoudi, The topological asymptotic, in Computational Methods for Control Applications, R. Glowinski, H. Karawada and J. Periaux Eds., GAKUTO Internat. Ser. Math. Sci. Appl. 16, Tokyo, Japan (2001) 53–72. [Google Scholar]
  23. D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685. [CrossRef] [MathSciNet] [Google Scholar]
  24. N. Paragios and R. Deriche, Geodesic active regions and level set methods for supervised texture segmentation. Int. Jour. Computer Vision 46 (2002) 223–247. [CrossRef] [Google Scholar]
  25. T. Pavlidis and Y.-T. Liow, Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990) 225–233. [CrossRef] [Google Scholar]
  26. P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intelligence 12 (1990) 629–638. [CrossRef] [Google Scholar]
  27. B. Samet, S. Amstutz and M. Masmoudi, The topological asymptotic for the Helmholtz equation. SIAM J. Control Optim. 42 (2003) 1523–1544. [CrossRef] [MathSciNet] [Google Scholar]
  28. C. Samson, L. Blanc-Féraud, G. Aubert and J. Zerubia, A level set method for image classification. Int. J. Comput. Vision 40 (2000) 187–197. [CrossRef] [Google Scholar]
  29. C. Samson, L. Blanc-Féraud, G. Aubert and J. Zerubia, A variational model for image classification and restauration. IEEE Trans. Pattern Anal. Machine Intelligence 22 (2000) 460–472. [CrossRef] [Google Scholar]
  30. J.A. Sethian, Level set methods evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambride University Press (1996). [Google Scholar]
  31. J. Sokolowski and A. Zochowski, Topological derivatives of shape functionals for elasticity systems. Int. Ser. Numer. Math. 139 (2002) 231–244. [Google Scholar]
  32. S. Solimini and J.M. Morel, Variational methods in image segmentation. Birkhauser (1995). [Google Scholar]
  33. L. Vese and T. Chan, Reduced Non-Convex Functional Approximations for Image Restoration and Segmentation. UCLA CAM Report 97–56 (1997). [Google Scholar]
  34. M.Y. Wang, D. Wang and A. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192 (2003) 227–246. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Weickert, Efficient image segmentation using partial differential equations and morphology. Pattern Recogn. 34 (2001) 1813–1824. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you