Free Access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 485 - 511
DOI https://doi.org/10.1051/m2an:2007029
Published online 02 August 2007
  1. W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2003). [Google Scholar]
  2. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2005) 1117–1138 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637–659. [CrossRef] [Google Scholar]
  4. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (1973). [Google Scholar]
  5. H. Brézis and F.E. Browder, Nonlinear integral equations and systems of Hammerstein type. Adv. Math. 18 (1975) 115–147. [CrossRef] [Google Scholar]
  6. M. Broadie and J. Detemple, Recent advances in numerical methods for pricing derivative securities, in Numerical Methods in Finance, L.C.G. Rogers and D. Talay Eds., Cambridge University Press (1997) 43–66. [Google Scholar]
  7. L.A. Caffarelli, The regularity of monotone maps of finite compression. Comm. Pure Appl. Math. 50 (1997) 563–591. [CrossRef] [MathSciNet] [Google Scholar]
  8. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. [CrossRef] [MathSciNet] [Google Scholar]
  9. C.W. Cryer, Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems I, Ist. Naz. Alta Mat. Francesco Severi (1980) 109–131. [Google Scholar]
  10. A. Fetter, L-error estimate for an approximation of a parabolic variational inequality. Numer. Math. 50 (1987) 57–565. [Google Scholar]
  11. F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal. 41 (2003) 2032–2055. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Glowinski, Numerical methods for nonlinear variational problems. Springer series in computational physics, Springer-Verlag (1984). [Google Scholar]
  13. P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math. 21 (1990) 263–289. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Johnson, Convergence estimate for an approximation of a parabolic variational inequatlity. SIAM J. Numer. Anal. 13 (1976) 599–606. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance. Springer (1996). [Google Scholar]
  16. R.H. Nochetto and C.-S. Zhang, Adaptive mesh refinement for evolution obstacle problems (in preparation). [Google Scholar]
  17. R.H. Nochetto, G. Savaré and C. Verdi, Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Ser. I 326 (1998) 1437–1442. [Google Scholar]
  18. R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525–589. [Google Scholar]
  19. R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163–195. [CrossRef] [MathSciNet] [Google Scholar]
  20. R.H. Nochetto, K.G. Siebert and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal. 42 (2005) 2118–2135. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Schmidt and K.G. Siebert, Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, Springer (2005). [Google Scholar]
  23. A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal. 39 (2001) 146–167. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner (1996). [Google Scholar]
  25. R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
  26. T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93–127. [CrossRef] [EDP Sciences] [Google Scholar]
  27. C. Vuik, An L2-error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math. 57 (1990) 453–471. [CrossRef] [MathSciNet] [Google Scholar]
  28. P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford, UK (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you