Free Access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 513 - 542
DOI https://doi.org/10.1051/m2an:2007033
Published online 02 August 2007
  1. J. Ablowitz and H. Segur, On the evolution of packets of water waves. J. Fluid Mech. 92 (1979) 691–715. [CrossRef] [MathSciNet] [Google Scholar]
  2. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Phil. Trans. R. Soc. London Ser. A 272 (1972) 47–78. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Besse, A relaxation scheme for the nonlinear Shrödinger equation. J. Numer. Anal. 42 (2004) 934–952. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.L. Bona and H. Chen, Comparison of model equations for small-amplitude long waves. Nonlinear Anal. 38 (1999) 625–647. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.L. Bona and R. Smith, The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Roy. Soc. London Ser. A 278 (1975) 555–601. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.L. Bona, W.G. Pritchard and L.R. Scott, A comparison of solutions of two model equations for long waves. Lect. Appl. Math. 20 (1983) 235–267. [Google Scholar]
  7. J.L. Bona, Y. Liu and M.M. Tom, The Cauchy problem and stability of solitary wave solutions for the RLW-KP equation. J. Differ. Equations 185 (2002) 437–482. [CrossRef] [Google Scholar]
  8. J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation. Geom. Funct. Anal. 3 (1993) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Hamidouche, Simulations numériques des équations de Kadomtsev-Petviashvili. Thèse de doctorat, Université Paris XI, France (2001). [Google Scholar]
  10. International Tsunami Information Centre, Tsunami: les grandes vagues. Brochure du programme Tsunami de l'UNESCO (2003). [Google Scholar]
  11. R.J Iório Jr., KdV, BO and friends in weighted Sobolev spaces. Lect. Notes Math. 1450 (1990) 104–121. [CrossRef] [Google Scholar]
  12. R.J Iório Jr. and W.V.L. Nunes, On equation of KP-type. Proc. Roy. Soc. Edinburgh A 128 (1998) 725–743. [Google Scholar]
  13. B.B. Kadomtsev and V.I. Petviashvili, Model equations for long waves in nonlinear dispersive systems. Sov. Phys. Dokady 15 (1970) 539. [Google Scholar]
  14. T. Kato and G. Ponce, Commutator estimates for the Euler and Navier-Stokes Equations. Comm. Pures. Appl. Math. 14 (1988) 891–907. [CrossRef] [MathSciNet] [Google Scholar]
  15. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal and on a new type of long stationnary waves. Phil. Maj. 39 (1895) 422–443. [Google Scholar]
  16. M.D. Kruskal, Nonlinear wave equations, theory and applications. Lect. Notes Phys. (1975) 310–354. [Google Scholar]
  17. A. Miranville, R. Temam, Mathematical Modelling in Continuum Mechanics. Cambridge University Press (1999). [Google Scholar]
  18. J.C. Saut and N. Tzvetkov, Global well-posedness for the KP-BBM equation. AMRX (2004) 1–16. [Google Scholar]
  19. M.E. Taylor, Partial Differential Equations I: Basic theory. Applied mathematical sciences 115, Springer (1996). [Google Scholar]
  20. G.B. Whitham, Linear and Nonlinear Waves. John Wiley & Sons, New York (1974). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you