Free Access
Issue
ESAIM: M2AN
Volume 41, Number 3, May-June 2007
Page(s) 447 - 459
DOI https://doi.org/10.1051/m2an:2007030
Published online 02 August 2007
  1. G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane. Ann. Scoula. Norm. Sup. Pisa Cl. Sci. 19 (1992) 567–589.
  2. G. Alessandrini, E. Rosset and J.K. Seo, Optimal size estimates for the inverse conductivity poblem with one measurement. Proc. Amer. Math. Soc. 128 (2000) 53–64. [CrossRef] [MathSciNet]
  3. Amnesty International, Internet site address: http://web.amnesty.org/library/index/engamr510302006
  4. M. Cheney, D. Isaacson and J.C. Newell, Electrical impedance tomography. SIAM Rev. 41 (1999) 85–101. [CrossRef] [MathSciNet]
  5. V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient. Comm. Pure Appl. Math. 41 (1988) 856–877.
  6. P.J. Kim and W.H. Franklin, Ventricular Fibrillation after Stun-Gun Discharge. N. Engl. J. Med. 353 (2005) 958–959. [CrossRef] [PubMed]
  7. S.W. Kim, O. Kwon, J.K. Seo and J.R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography. SIAM J. Math. Anal. 34 (2002) 511–526. [CrossRef] [MathSciNet]
  8. Y.J. Kim, O. Kwon, J.K. Seo and E.J. Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse Probl. 19 (2003) 1213–1225. [CrossRef]
  9. R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 113–123.
  10. O. Kwon, E. Woo, J.R. Yoon and J.K. Seo, Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm. IEEE Trans. Biomed. Eng. 49 (2002) 160–167. [CrossRef] [PubMed]
  11. D. Laur, Excited delirium and its correlation to sudden and unexpected death proximal to restraint (Canada: Victoria Police Department) http://www.taser.com/facts/medical_info.htm (2004).
  12. B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo and W.S. Baek, Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT). Physiol. Meas. 24 (2003) 579–589. [CrossRef] [PubMed]
  13. D.K. Mcbride and N.B. Tedder, Efficacy and Safety of Electrical Stun Devices, A Potomac Institute for Policy Studies Report: No. 05 . 04, http://www.potomacinstitute.com/research/Stun%20Devices%20Report_FINAL.pdf (2005).
  14. W.C. Mcdaniel, R.A. Stratbucker, M. Nerheim and J.E. Brewer, Cardiac Safety of Neuromuscular Incapacitating Defensive Devices. PACE Supplement 1 (2005) 284–287.
  15. P. Metherall, D.C. Barber, R.H. Smallwood and B.H. Brown, Three Dimensional Electrical Impedance Tomography. Nature 380 (1996) 509–512. [CrossRef] [PubMed]
  16. A. Nachman, Reconstructions from boundary measurements. Ann. Math. 128 (1988) 531–577. [CrossRef]
  17. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon and J.K. Seo, Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys. Med. Biol. 48 (2003) 3101–3016. [CrossRef] [PubMed]
  18. S.H. Oh, B.I. Lee, S.Y. Lee, E.J. Woo, M.H. Cho, O. Kwon and J.K. Seo, Magnetic resonance electrical impedance tomography: phantom experiments using a 3.0 Tesla MRI system. Magn. Reson. Med. 51 (2004) 1292–1296. [CrossRef] [PubMed]
  19. C. Park, O. Kwon, E.J. Woo and J.K. Seo, Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT). IEEE Trans. Med. Imag. 23 (2004) 388–394. [CrossRef]
  20. J.S. Park, M.S. Chung, S.B. Hwang, Y.S. Lee, D.H. Har and H.S. Park, Visible Korean Human: Improved Serially Sectioned Images of the Entire Body. IEEE Trans. Med. Imag. 24 (2005) 352–360. [CrossRef]
  21. F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging. SIAM J. Appl. Math. 50 (1990) 216–243. [CrossRef] [MathSciNet]
  22. G.C. Scott, M.L.G. Joy, R.L. Armstrong and R.M. Henkelman, Measurement of nonuniform current density by magnetic resonance. IEEE Trans. Med. Imag. 10 (1991) 362–374. [CrossRef]
  23. J.K. Seo, A uniqueness results on inverse conductivity problem with two measurements. J. Fourier Anal. App. 2 (1996) 515–524.
  24. J.K. Seo, J.R. Yoon, E.J. Woo and O. Kwon, Reconstruction of conductivity and current density images using only one component of magnetic field measurements. IEEE Trans. Biomed. Eng. 50 (2003) 1121–1124. [CrossRef] [PubMed]
  25. J.K. Seo, O. Kwon, B.I. Lee and E.J. Woo, Reconstruction of current density distributions in axially symmetric cylindrical sections using one component of magnetic flux density: computer simulation study. Physiol. Meas. 24 (2003) 565–577. [CrossRef] [PubMed]
  26. J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125 (1987) 153–169. [CrossRef] [MathSciNet]
  27. Taser M26 and X26 manuals, http://www.taser.com/index.htm
  28. G. Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains. J. Func. Anal. 59 (1984) 572–611. [CrossRef]
  29. J.G. Webster, Electromuscular Incapacitating Devices. Proc. IFMBE 2005 9 (2005) 150–151.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you