Free Access
Volume 41, Number 3, May-June 2007
Page(s) 447 - 459
Published online 02 August 2007
  1. G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane. Ann. Scoula. Norm. Sup. Pisa Cl. Sci. 19 (1992) 567–589. [Google Scholar]
  2. G. Alessandrini, E. Rosset and J.K. Seo, Optimal size estimates for the inverse conductivity poblem with one measurement. Proc. Amer. Math. Soc. 128 (2000) 53–64. [CrossRef] [MathSciNet] [Google Scholar]
  3. Amnesty International, Internet site address: [Google Scholar]
  4. M. Cheney, D. Isaacson and J.C. Newell, Electrical impedance tomography. SIAM Rev. 41 (1999) 85–101. [CrossRef] [MathSciNet] [Google Scholar]
  5. V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient. Comm. Pure Appl. Math. 41 (1988) 856–877. [Google Scholar]
  6. P.J. Kim and W.H. Franklin, Ventricular Fibrillation after Stun-Gun Discharge. N. Engl. J. Med. 353 (2005) 958–959. [CrossRef] [PubMed] [Google Scholar]
  7. S.W. Kim, O. Kwon, J.K. Seo and J.R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography. SIAM J. Math. Anal. 34 (2002) 511–526. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y.J. Kim, O. Kwon, J.K. Seo and E.J. Woo, Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. Inverse Probl. 19 (2003) 1213–1225. [CrossRef] [Google Scholar]
  9. R. Kohn and M. Vogelius, Determining conductivity by boundary measurements. Comm. Pure Appl. Math. 37 (1984) 113–123. [Google Scholar]
  10. O. Kwon, E. Woo, J.R. Yoon and J.K. Seo, Magnetic resonance electrical impedance tomography (MREIT): simulation study of J-substitution algorithm. IEEE Trans. Biomed. Eng. 49 (2002) 160–167. [CrossRef] [PubMed] [Google Scholar]
  11. D. Laur, Excited delirium and its correlation to sudden and unexpected death proximal to restraint (Canada: Victoria Police Department) (2004). [Google Scholar]
  12. B.I. Lee, S.H. Oh, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon, J.K. Seo and W.S. Baek, Static resistivity image of a cubic saline phantom in magnetic resonance electrical impedance tomography (MREIT). Physiol. Meas. 24 (2003) 579–589. [CrossRef] [PubMed] [Google Scholar]
  13. D.K. Mcbride and N.B. Tedder, Efficacy and Safety of Electrical Stun Devices, A Potomac Institute for Policy Studies Report: No. 05 . 04, (2005). [Google Scholar]
  14. W.C. Mcdaniel, R.A. Stratbucker, M. Nerheim and J.E. Brewer, Cardiac Safety of Neuromuscular Incapacitating Defensive Devices. PACE Supplement 1 (2005) 284–287. [Google Scholar]
  15. P. Metherall, D.C. Barber, R.H. Smallwood and B.H. Brown, Three Dimensional Electrical Impedance Tomography. Nature 380 (1996) 509–512. [CrossRef] [PubMed] [Google Scholar]
  16. A. Nachman, Reconstructions from boundary measurements. Ann. Math. 128 (1988) 531–577. [CrossRef] [Google Scholar]
  17. S.H. Oh, B.I. Lee, E.J. Woo, S.Y. Lee, M.H. Cho, O. Kwon and J.K. Seo, Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Phys. Med. Biol. 48 (2003) 3101–3016. [CrossRef] [PubMed] [Google Scholar]
  18. S.H. Oh, B.I. Lee, S.Y. Lee, E.J. Woo, M.H. Cho, O. Kwon and J.K. Seo, Magnetic resonance electrical impedance tomography: phantom experiments using a 3.0 Tesla MRI system. Magn. Reson. Med. 51 (2004) 1292–1296. [CrossRef] [PubMed] [Google Scholar]
  19. C. Park, O. Kwon, E.J. Woo and J.K. Seo, Electrical conductivity imaging using gradient Bz decomposition algorithm in magnetic resonance electrical impedance tomography (MREIT). IEEE Trans. Med. Imag. 23 (2004) 388–394. [CrossRef] [Google Scholar]
  20. J.S. Park, M.S. Chung, S.B. Hwang, Y.S. Lee, D.H. Har and H.S. Park, Visible Korean Human: Improved Serially Sectioned Images of the Entire Body. IEEE Trans. Med. Imag. 24 (2005) 352–360. [CrossRef] [Google Scholar]
  21. F. Santosa and M. Vogelius, A backprojection algorithm for electrical impedance imaging. SIAM J. Appl. Math. 50 (1990) 216–243. [CrossRef] [MathSciNet] [Google Scholar]
  22. G.C. Scott, M.L.G. Joy, R.L. Armstrong and R.M. Henkelman, Measurement of nonuniform current density by magnetic resonance. IEEE Trans. Med. Imag. 10 (1991) 362–374. [CrossRef] [Google Scholar]
  23. J.K. Seo, A uniqueness results on inverse conductivity problem with two measurements. J. Fourier Anal. App. 2 (1996) 515–524. [Google Scholar]
  24. J.K. Seo, J.R. Yoon, E.J. Woo and O. Kwon, Reconstruction of conductivity and current density images using only one component of magnetic field measurements. IEEE Trans. Biomed. Eng. 50 (2003) 1121–1124. [CrossRef] [PubMed] [Google Scholar]
  25. J.K. Seo, O. Kwon, B.I. Lee and E.J. Woo, Reconstruction of current density distributions in axially symmetric cylindrical sections using one component of magnetic flux density: computer simulation study. Physiol. Meas. 24 (2003) 565–577. [CrossRef] [PubMed] [Google Scholar]
  26. J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem. Ann. Math. 125 (1987) 153–169. [CrossRef] [MathSciNet] [Google Scholar]
  27. Taser M26 and X26 manuals, [Google Scholar]
  28. G. Verchota, Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains. J. Func. Anal. 59 (1984) 572–611. [CrossRef] [Google Scholar]
  29. J.G. Webster, Electromuscular Incapacitating Devices. Proc. IFMBE 2005 9 (2005) 150–151. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you