Free Access
Issue
ESAIM: M2AN
Volume 41, Number 4, July-August 2007
Page(s) 661 - 678
DOI https://doi.org/10.1051/m2an:2007036
Published online 04 October 2007
  1. R.M. Bowen, Theory of mixtures, in Continuum Physics, A.C. Eringen Ed., Vol. III, Academic Press, New York (1976) 1–127. [Google Scholar]
  2. R.M. Bowen, Incompressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 18 (1980) 1129–1148. [CrossRef] [Google Scholar]
  3. R.M. Bowen, Compressible porous media models by use of the theory of mixtures. Int. J. Engng. Sci. 20 (1982) 697–735. [CrossRef] [Google Scholar]
  4. Y. Chen, X. Chen and T. Hisada, Non-linear finite element analysis of mechanical electrochemical phenomena in hydrated soft tissues based on triphasic theory. Int. J. Numer. Mech. Engng. 65 (2006) 147–173. [CrossRef] [Google Scholar]
  5. B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13 (1963) 167–178. [CrossRef] [MathSciNet] [Google Scholar]
  6. W. Ehlers, Foundations of multiphasic and porous materials, in Porous Media: Theory, Expriements and Numerical Applications, W. Ehlers and J. Blaum Eds., Springer-Verlag, Berlin (2002) 3–86. [Google Scholar]
  7. A.J.H. Frijns, A four-component mixture theory applied to cartilaginous tissues. Ph.D. thesis, Eindhoven University of Technology (2001). [Google Scholar]
  8. W.Y. Gu, W.M. Lai and V.C. Mow, A triphasic analysis of negative osmotic flows through charged hydrated soft tissues J. Biomechanics 30 (1997) 71–78. [Google Scholar]
  9. W.Y. Gu, W.M. Lai and V.C. Mow, Transport of multi-electrolytes in charged hydrated biological soft tissues. Transport Porous Med. 34 (1999) 143–157. [CrossRef] [Google Scholar]
  10. F. Helfferich, Ion exchange. McGraw-Hill, New York (1962). [Google Scholar]
  11. G.A. Holzapfel, Nonlinear Solid Mechanics. Wiley (2000). [Google Scholar]
  12. J.M. Huyghe and J.D. Janssen, Quadriphasic mechanics of swelling incompressible porous media. Int. J. Engng. Sci. 35 (1997) 793–802. [CrossRef] [Google Scholar]
  13. J.M. Huyghe, M.M. Molenaar and F.P.T. Baaijens, Poromechanics of compressible charged porous media using the theory of mixtures. J. Biomech. Eng. (2007) in press. [Google Scholar]
  14. W.M. Lai, J.S. Houa and V.C. Mow, A triphasic theory for the swelling and deformation behaviours of articular cartilage. ASME J. Biomech. Eng. 113 (1991) 245–258. [CrossRef] [PubMed] [Google Scholar]
  15. E.G. Richards, An introduction to physical properties of large molecules in solute. Cambridge University Press, Cambridge (1980). [Google Scholar]
  16. C. Truesdell and R.A. Toupin, The classical field theories, in Handbuch der Physik, Vol. III/1, S. Flügge Ed., Springer-Verlag, Berlin (1960) 226–902. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you