Free Access
Volume 41, Number 4, July-August 2007
Page(s) 679 - 712
Published online 04 October 2007
  1. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin-Heidelberg- New York (2002). [Google Scholar]
  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin-Heidelberg-New York (1991). [Google Scholar]
  3. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4. North Holland, Amsterdam (1978). [Google Scholar]
  4. S. Flügge, Handbuch der physik, Elastizität und plastizität. Springer-Verlag (1958). [Google Scholar]
  5. B.X. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, in Stress Analysis, O.C. Zienkiewicz and G. Holister Eds., John Wiley, New York (1965). [Google Scholar]
  6. B.X. Fraeijs de Veubeke, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341–354. [MathSciNet] [Google Scholar]
  7. A.J.H. Frijns, A four-component mixture theory applied to cartilaginous tissues. Ph.D. thesis, Eindhoven University of Technology (2001). [Google Scholar]
  8. J.M. Huyghe and J.D. Janssen, Quadriphasic mechanics of swelling incompressibleporous media. Int. J. Engng. Sci. 35 (1997) 793–802. [CrossRef] [Google Scholar]
  9. E.F. Kaasschieter and A.J.M. Huijben, Mixed-hybrid finite elements and streamline computation for the potential flow problem. Numer. Methods Partial Differ. Equat. 8 (1992) 221–266. [CrossRef] [Google Scholar]
  10. K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, An analytical solution of incompressible charged porous media. Z. Angew. Math. Mech. 86 (2006) 667-681. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. ESAIM: M2AN 41 (2007) 661–678. [CrossRef] [EDP Sciences] [Google Scholar]
  12. J.C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1980) 57. [Google Scholar]
  14. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd-order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Note in Mathematics 606, I. Galligani and E. Magenes Eds., Springer, Berlin (1997) 292–315. [Google Scholar]
  15. J.E. Roberts and J.M. Thomas, Mixed and hybrid finite element methods, in Handbook of Numerical Analysis, Volume II: Finite Element Methods, P.G. Ciarlet and J.L. Lions Eds., North Holland, Amsterdam (1991) 523–639. [Google Scholar]
  16. J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Ph.D. thesis, University Pierre et Marie Curie, Paris (1977). [Google Scholar]
  17. R. van Loon, J.M. Huyghe, M.W. Wijlaars and F.P.T. Baaijens, 3D FE implementation of an incompressible quadriphasic mixture model. Inter. J. Numer. Meth. Eng. 57 (2003) 1243–1258. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you