Free Access
Volume 41, Number 5, September-October 2007
Page(s) 825 - 854
Published online 23 October 2007
  1. A.A. Alazman, J.P. Albert, J.L. Bona, M. Chen and J. Wu, Comparisons between the BBM equation and a Boussinesq system. Adv. Differential Equations 11 (2006) 121–166. [MathSciNet] [Google Scholar]
  2. D.C. Antonopoulos, The Boussinesq system of equations: Theory and numerical analysis. Ph.D. Thesis, University of Athens, 2000 (in Greek). [Google Scholar]
  3. D.C. Antonopoulos, V.A. Dougalis and D.E. Mitsotakis, Theory and numerical analysis of the Bona-Smith type systems of Boussinesq equations. (to appear). [Google Scholar]
  4. J.L. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116 (1998) 191–224. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.L. Bona and R. Smith, A model for the two-way propagation of water waves in a channel. Math. Proc. Camb. Phil. Soc. 79 (1976) 167–182. [CrossRef] [Google Scholar]
  6. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: I. Derivation and Linear Theory. J. Nonlinear Sci. 12 (2002) 283–318. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory. Nonlinearity 17 (2004) 925–952. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.L. Bona, T. Colin and D. Lannes, Long wave approximations for water waves. Arch. Rational Mech. Anal. 178 (2005) 373–410. [Google Scholar]
  9. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
  10. M. Chen, Exact traveling-wave solutions to bi-directional wave equations. Int. J. Theor. Phys. 37 (1998) 1547–1567. [CrossRef] [Google Scholar]
  11. M. Chen, Solitary-wave and multi pulsed traveling-wave solutions of Boussinesq systems. Applic. Analysis 75 (2000) 213–240. [Google Scholar]
  12. V.A. Dougalis and D.E. Mitsotakis, Solitary waves of the Bona-Smith system, in Advances in scattering theory and biomedical engineering, D. Fotiadis and C. Massalas Eds., World Scientific, New Jersey (2004) 286–294. [Google Scholar]
  13. V.A. Dougalis, D.E. Mitsotakis and J.-C. Saut, On initial-boundary value problems for some Boussinesq systems in two space dimensions. (to appear). [Google Scholar]
  14. P. Grisvard, Quelques proprietés des espaces de Sobolev, utiles dans l'étude des équations de Navier-Stokes (I). Problèmes d'évolution, non linéaires, Séminaire de Nice (1974–1976). [Google Scholar]
  15. D.R. Kincaid, J.R. Respess, D.M. Young and R.G. Grimes, ITPACK 2C: A Fortran package for solving large sparse linear systems by adaptive accelerated iterative methods. ACM Trans. Math. Software 8 (1982) 302–322. [CrossRef] [Google Scholar]
  16. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437–445. [Google Scholar]
  17. A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L of the Formula -projection into finite elements spaces. Math. Comp. 38 (1982) 1–22. [MathSciNet] [Google Scholar]
  18. M.H. Schultz, L Multivariate approximation theory. SIAM J. Numer. Anal. 6 (1969) 161–183. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.H. Schultz, Approximation theory of multivatiate spline functions in Sobolev spaces. SIAM J. Numer. Anal. 6 (1969) 570–582. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.F. Toland, Existence of symmetric homoclinic orbits for systems of Euler-Lagrange equations. A.M.S. Proc. Symposia in Pure Mathematics 45 (1986) 447–459. [Google Scholar]
  21. G.B. Whitham, Linear and Non-linear Waves. Wiley, New York (1974). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you