Free Access
Issue
ESAIM: M2AN
Volume 41, Number 5, September-October 2007
Page(s) 855 - 874
DOI https://doi.org/10.1051/m2an:2007034
Published online 23 October 2007
  1. M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211–224. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Braess and R. Sarazin, An efficient smoother for the Stokes problem. Appl. Numer. Math. 23 (1997) 3–19. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. [CrossRef] [MathSciNet] [Google Scholar]
  4. Z. Cai, J. Douglas, Jr. and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215–232. [CrossRef] [MathSciNet] [Google Scholar]
  5. Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming quadrilateral finite elements: a correction. Calcolo 37 (2000) 253–254. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO. Anal. Numér. 7 (1973) 33–76. [Google Scholar]
  7. J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747–770. [CrossRef] [EDP Sciences] [Google Scholar]
  8. M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341–354. [MathSciNet] [Google Scholar]
  9. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin-Heidelberg-New York (1986). [Google Scholar]
  10. H.D. Han, Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223–233. [MathSciNet] [Google Scholar]
  11. J.P. Hennart, J. Jaffré and J.E. Roberts, A constructive method for deriving finite elements of nodal type. Numer. Math. 53 (1988) 701–738. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models . Lecture Notes in Computational Science and Engineering 34, Springer-Verlag, Berlin, Heidelberg, New York (2003). [Google Scholar]
  13. V. John and G. Matthies, Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids 37 (2001) 885–903. [CrossRef] [Google Scholar]
  14. V. John and G. Matthies, MooNMD—a program package based on mapped finite element methods. Comput. Vis. Sci. 6 (2004) 163–169. [MathSciNet] [Google Scholar]
  15. V. John, P. Knobloch, G. Matthies and L. Tobiska, Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68 (2002) 313–341. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Matthies and L. Tobiska, The inf-sup condition for the mapped Formula element in arbitrary space dimensions. Computing 69 (2002) 119–139. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Matthies and L. Tobiska, Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math. 102 (2005) 293–309. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Maubach and P. Rabier, Nonconforming finite elements of arbitrary degree over triangles. RANA report 0328, Technical University of Eindhoven (2003). [Google Scholar]
  19. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ. 8 (1992) 97–111. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 00-25, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2000). [Google Scholar]
  21. S. Vanka, Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Engrg. 59 (1986) 29–48. [CrossRef] [Google Scholar]
  22. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175–182. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you