Free Access
Volume 41, Number 5, September-October 2007
Page(s) 945 - 957
Published online 23 October 2007
  1. I. Babuska, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945–981. [Google Scholar]
  2. Z. Chen and T.Y. Hou, A mixed multiscale finite element method for elliptic problem with oscillating coefficients. Math. Comp. 72 (2003) 541–576. [Google Scholar]
  3. Z. Chen and X. Yue, Numerical homogenization of well singularities in the flow transport through heterogeneous porous media. Multiscale Model. Simul. 1 (2003) 260–303. [CrossRef] [MathSciNet] [Google Scholar]
  4. L.J. Durlofsky, Numerical-calculation of equivalent grid block permeability tensors for heterogeous porous media. Water Resour. Res. 27 (1991) 699–708. [Google Scholar]
  5. L.J. Durlofsky, W.J. Milliken and A. Bernath, Scale up in the Near-Well Region, SPE 51940, in Proceedings of the 15th SPE Symposium on Reservoir Simulation, Houston, February (1999) 14–17. [Google Scholar]
  6. W. E and B. Engquist, The heterogeneous multiscale methods. Commun. Math. Sci. 1 (2003) 87–132. [CrossRef] [MathSciNet] [Google Scholar]
  7. Y.R. Efendiev, T.Y. Hou and X.H. Wu, The convergence of non-conforming multiscale finite element methods. SIAM J. Numer. Anal. 37 (2000) 888–910. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Gloria, A direct approach to numerical homogenization in finite elasticity. Netw. Heterog. Media 1 (2006) 109–141. [MathSciNet] [Google Scholar]
  9. A. Gloria, A analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies. Multiscale Model. Simul. 5 (2006) 996–1043. [Google Scholar]
  10. T.Y. Hou and X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet] [Google Scholar]
  11. T.Y. Hou, X.H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913–943. [Google Scholar]
  12. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals. Springer, Berlin (1994). [Google Scholar]
  13. O. Mascarenhas and L.J. Durlofsky, Scale up in the vicinity of horizontal wells, in Proceedings of the 20th Annual International Energy Agency Workshop and Symposium, Paris, September (1999) 22–24. [Google Scholar]
  14. A.M. Matache, I. Babuska and C. Schwab, Generalized p-FEM in homogenization. Numer. Math. 86 (2000) 319–375. [CrossRef] [MathSciNet] [Google Scholar]
  15. D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulations. Soc. Pet. Eng. J. 18 (1978) 183–194. [Google Scholar]
  16. X.H. Wen and J.J. Gomez-Hernandez, Upscaling hydraulic conductivities in heterogeneous media: an overview. J. Hydrol. 183 (1996) ix–xxxii. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you