Free Access
Volume 41, Number 5, September-October 2007
Page(s) 875 - 895
Published online 23 October 2007
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet]
  2. T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow in homogenization theory. SIAM J. Math. Anal. 21 (1990) 823–836. [CrossRef] [MathSciNet]
  3. A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic methods in periodic media. North Holland (1978).
  4. A. Bourgeat, J.B. Castillero, J.A. Otero and R.R. Ramos, Asymptotic homogenization of laminated piezocomposite materials. Int. J. Solids Structures 35 (1998) 527–541. [CrossRef]
  5. D. Caillerie and E. Sanchez-Palencia, A new kind of singular stiff problems and application to thin elastic shells. Math. Models Methods Appl. Sci. 5 (1995) 47–66. [CrossRef] [MathSciNet]
  6. D. Caillerie and E. Sanchez-Palencia, Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases. Math. Models Methods Appl. Sci. 5 (1995) 473–496. [CrossRef] [MathSciNet]
  7. A. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Acad. Sci. Paris, Sér. I 335 (2002) 99–104.
  8. D. Cioranescu and P. Donato, An introduction to homogenization. Oxford University Press (1999).
  9. D. Cioranescu and P. Donato, The periodic unfolding method in perforated domains,Portugaliae Mathematica, Vol. 63, Fasc. 4 (2006) 467–496.
  10. D. Cioranescu and J. Saint-Jean Paulin, Homogenization of reticulated structures. Springer-Verlag, New-York (1999).
  11. D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Porth. Math. N.S. 63 (2006) 467–496.
  12. E. Dieulesaint and D. Royer, Ondes élastiques dans les solides, application au traitement du signal. Masson, Paris (1974).
  13. C. Haenel, Analyse et simulation numérique de coques piézoélectriques. Ph.D. thesis, Université Pierre et Marie Curie, France (2000).
  14. T. Ikeda, Fundamentals of piezoelectricity. Oxford University Press (1990).
  15. W.T. Koiter, On the foundations of the linear theory of thin elastic shell. Proc. Kon. Ned. Akad. Wetensch. B73 (1970) 169–195.
  16. T. Lewiński and J.J. Telega, Plates, laminates and shells. Asymptotic analysis and homogenization, Advances in Mathematics for Applied Sciences. World Scientific (2000).
  17. S. Luckhaus, A. Bourgeat and A. Mikelic, Convergence of the homogenization process for a double porosity model of immiscible two phase flow. SIAM J. Math. Anal. 27 (1996) 1520–1543. [CrossRef] [MathSciNet]
  18. H. Mechkour, Homogénéisation et simulation numérique de structures piézoeléctriques perforées et laminées. Ph.D. thesis, ESIEE-Paris (2004).
  19. B. Miara, E. Rohan, M. Zidi and B. Labat, Piezomaterials for bone regeneration design. Homogenization approach. J. Mech. Phys. Solids 53 (2005) 2529–2556. [CrossRef] [MathSciNet]
  20. G. Nguetseng, A general convergence result for a functional related to the theory of homogenisation. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet]
  21. A. Preumont, A. François and P. de Man, Spatial filtering with piezoelectric films via porous electrod design, in Proc. of 13th Int. Conf. on Adaptive Structures and Technologies, Berlin (2002).
  22. J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Application à la Mécanique des milieux continus. Masson, Paris (1992).
  23. J. Sanchez-Hubert and E. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques. Masson, Paris (1997).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you