Free Access
Volume 41, Number 6, November-December 2007
Page(s) 975 - 1000
Published online 15 December 2007
  1. P. Aagaard and H.C. Helgeson, Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions, I, Theorical considerations. Am. J. Sci. 282 (1982) 237–285. [Google Scholar]
  2. B. Bary and S. Béjaoui, Assessment of diffusive and mechanical properties of hardened cement pastes using a multi-coated sphere assemblage model. Cem. Concr. Res. 36 (2006) 245–258. [Google Scholar]
  3. D. Bothe and D. Hilhorst, A reaction diffusion system with fast reversible reaction. J. Math. Anal. Appl. 286 (2003) 125–135. [CrossRef] [MathSciNet] [Google Scholar]
  4. N. Bouillard, P. Montarnal and R. Herbin, Development of numerical methods for the reactive transport of chemical species in a porous media: a nonlinear conjugate gradient method, in Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, Coupled Problems (2005), M. Papadrakis, E. Onate and B. Schreffer Eds., CIMNE, Barcelona, Spain, p. 229, ISBN: 84-95999-71-4, available on CD. See also: [Google Scholar]
  5. K. Deimling, Nonlinear functional analysis. Springer-Verlag, Berlin (1985). [Google Scholar]
  6. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, An error estimate for a finite volume scheme forba nonlinear hyperbolic equation on a triangular mesh. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Eymard, T. Gallouët and R. Herbin, Convergence of finite volume schemes for semilinear convection diffusion equations. Numer. Math. 82 (1999) 91–116. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Eymard, T. Gallouët, R. Herbin, D. Hilhorst and M. Mainguy, Instantaneous and noninstantaneous dissolution: approximation by the finite volume method, in Actes du 30ème Congrès d'Analyse Numérique, ESAIM Proceedings 6, Soc. Math. Appl. Indust., Paris (1999) 41–55. [Google Scholar]
  9. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Techniques of Scientific Computing (Part III), Handbook for Numerical Analysis VII, P.G Ciarlet and J.L. Lions Eds., North Holland (2000) 713–1020. [Google Scholar]
  10. R. Eymard, T. Gallouët, M. Gutnic, R. Herbin and D. Hilhorst, Approximation by the finite volume method of an elliptic-parabolic equation arising in environmental studies. Math. Models Methods Appl. Sci. 11 (2001) 1505–1528. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Eymard, D. Hilhorst, R. van der Hout and L.A. Peletier, A reaction diffusion system approximation of a one phase Stefan problem, in Optimal Control and Partial Differential Equations, IOS Press (2001) 156–170. [Google Scholar]
  12. R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Num. Math. 92 (2002) 41–82. [Google Scholar]
  13. J. Ganor, T.J. Huston and L.M. Walter, Quartz precipitation kinetics at 180 °C in NaCl solutions. Implications for the usability of the principle of detailed balancing. Geochim. Cosmochim. Acta 69 (2005) 2043–2056. [Google Scholar]
  14. E.R. Giambalvo, C.I. Steefel, A.T. Fisher, N.D. Rosenberg and C.G. Wheat, Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, Eastern flank of the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 66 10 (2002) 1739–1757. [Google Scholar]
  15. D. Hilhorst, R. van der Hout and L. Peletier, The fast reaction limit for a reaction-diffusion system. J. Math. Anal. Appl. 199 (1996) 349–373. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Holstad, A mathematical and numerical model for reactive fluid flow systems. Comp. Geosc. 4 (2000) 103–139. [CrossRef] [Google Scholar]
  17. U. Hornung, W. Jäger and A. Mikelić, Reactive transport through an array of cells with semipermeable membranes. RAIRO Modél. Math. Anal. Numér. 28 (1994) 59–94. [MathSciNet] [Google Scholar]
  18. P. Knabner, C.J. van Duijn and S. Hengst, An analysis of crystal dissolution fronts in flows through porous media. Part 1: Compatible boundary conditions. Adv. Water Res. 18 (1995) 171–185. [CrossRef] [Google Scholar]
  19. D. Langmuir, Aqueous environmental geochemistry. Prentice Hall (1997). [Google Scholar]
  20. A.C. Lasaga, Kinetic Theory in the Earth Sciences. Princeton University Press (1998). [Google Scholar]
  21. E. Maisse and J. Pousin, Diffusion and dissolution/precipitation in an open porous reactive medium. J. Comp. Appl. Math. 82 (1997) 279–290. [CrossRef] [Google Scholar]
  22. E. Maisse and J. Pousin, Finite element approximation of mass transfer in a porous medium with non equilibrium phase change. Numer. Math 12 (2004) 207–231. [CrossRef] [MathSciNet] [Google Scholar]
  23. E. Maisse, P. Moszkowicz and J. Pousin, Diffusion and dissolution in a reactive porous medium: modeling and numerical simulations, in Proceedings of the Mathematical modelling of flow through porous media: proceedings of the conference, A.P. Bourgeat, C. Carasso, S. Luckhaus and A. Mikelic Eds., World Scientific (1995), p. 515, ISBN: 981-02-2483-4. [Google Scholar]
  24. P. Montarnal, A. Dimier, E. Deville, E. Adam, J. Gaombalet, A. Bengaouer, L. Loth and C. Chavant, Coupling methodology within the software platform Alliances, in Int. Conf. on Computational Methods for Coupled Problems in Science and Engineering, Coupled Problems 2005, M. Papadrakis, E. Onate and B. Schreffer Eds., CIMNE, Barcelona, Spain, p. 229, ISBN: 84-95999-71-4, available on CD. See also: [Google Scholar]
  25. J.W. Morse and R.S. Arvidson, The dissolution kinetics of major sedimentary carbonate minerals. Earth Science Reviews 58 (2002) 51–84. [CrossRef] [Google Scholar]
  26. P. Moszkowicz, J. Pousin and F. Sanchez, Diffusion and dissolution in a reactive porous medium: Mathematical modelling and numerical simulations. J. Comp. Appl. Math. 66 (1996) 377–389. [CrossRef] [Google Scholar]
  27. C. Mügler, P. Montarnal, A. Dimier and L. Trotignon, Reactive transport modelling in the Alliances software platform, in Proceeding of CMWR, 13–17 June (2004), Chapel Hill, USA (2004) 1103–1115. [Google Scholar]
  28. D. Planel, J. Sercombe, P. Le Bescop, F. Adenot and J.-M. Torrenti, Long-term performance of cement paste during combined calcium leaching-sulfate attack: kinetics and size effect. Cem. Concr. Res. 36 (2006) 137–143. [Google Scholar]
  29. J. Pousin, Infinitely fast kinetics for dissolution and diffusion in open reactive systems. Nonlin. Anal. 39 (2000) 261–279. [CrossRef] [Google Scholar]
  30. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier 15 (1965) 189–258. [Google Scholar]
  31. C.I. Steefel and A.C. Lasaga, A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am. J. Sci. 294 (1994) 529–592. [Google Scholar]
  32. C.J. van Duijn and I.S. Pop, Crystal dissolution and precipitation in porous media: pore scale analysis. J. Reine Angew. Math. 577 (2004) 171–211. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you