Free Access
Volume 41, Number 6, November-December 2007
Page(s) 1001 - 1020
Published online 15 December 2007
  1. M. Ainsworth, Dispersive properties of high order Nédélec/edge element approximation of the time-harmonic Maxwell equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004) 471–491. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Ainsworth and J. Coyle, Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Meth. Engng. 58 (2003) 2103–2130. [CrossRef] [Google Scholar]
  3. M. Ainsworth, J. Coyle, P.D. Ledger and K. Morgan, Computation of Maxwell eigenvalues using higher order edge elements in three-dimensions. IEEE Trans. Magn. 39 (2003) 2149–2153. [CrossRef] [Google Scholar]
  4. M.A. Armstrong, Basic Topology. Springer-Verlag, New York (1983). [Google Scholar]
  5. D. Arnold, R. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1–155. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Boffi, M. Costabel, M. Dauge and L.F. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements. ICES Report 04–29 (2004). [Google Scholar]
  7. A. Bossavit, Computational Electromagnetism. Academic Press, New York (1998). [Google Scholar]
  8. A. Bossavit, Generating Whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38 (2002) 341–344. [CrossRef] [Google Scholar]
  9. A. Bossavit and F. Rapetti, Whitney forms of higher degree. Preprint. [Google Scholar]
  10. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  11. J. Gopalakrishnan, L.E. Garcia-Castillo and L.F. Demkowicz, Nédélec spaces in affine coordinates. ICES Report 03–48 (2003). [Google Scholar]
  12. R.D. Graglia, D.R. Wilton and A.F. Peterson, Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. on Ant. and Propag. 45 (1997) 329–342. [CrossRef] [Google Scholar]
  13. R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325–1346. [Google Scholar]
  14. R. Hiptmair, High order Whitney forms. Prog. Electr. Res. (PIER) 32 (2001) 271–299. [CrossRef] [Google Scholar]
  15. G.E. Karniadakis and S.J. Sherwin, Spectral hp element methods for CFD. Oxford Univ. Press, London (1999). [Google Scholar]
  16. J.M. Melenk, On condition numbers in hp-FEM with Gauss-Lobatto-based shape functions. J. Comput. Appl. Math. 139 (2002) 21–48. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Monk, Finite Element Methods for Maxwell's Equations. Oxford University Press (2003). [Google Scholar]
  18. J.C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Rapetti and A. Bossavit, Geometrical localization of the degrees of freedom for Whitney elements of higher order. IEE Sci. Meas. Technol. 1 (2007) 63–66. [CrossRef] [Google Scholar]
  20. J. Schöberl and S. Zaglmayr, High order Nédélec elements with local complete sequence properties. COMPEL 24 (2005) 374–384. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Stillwell, Classical topology and combinatorial group theory, Graduate Text in Mathematics 72. Springer-Verlag (1993). [Google Scholar]
  22. J.P. Webb and B. Forghani, Hierarchal scalar and vector tetrahedra. IEEE Trans. on Magn. 29 (1993) 1495–1498. [CrossRef] [Google Scholar]
  23. H. Whitney, Geometric integration theory. Princeton Univ. Press (1957). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you