Free Access
Volume 41, Number 6, November-December 2007
Page(s) 1041 - 1060
Published online 15 December 2007
  1. L. Ambrosio, Optimal transport maps in Monge-Kantorovich problem, Proceedings of the ICM (Beijing, 2002) III. Higher Ed. Press, Beijing (2002) 131–140. [Google Scholar]
  2. L. Ambrosio, Lecture notes on optimal transport, in Mathematical Aspects of Evolving Interfaces, L. Ambrosio et al. Eds., Lect. Notes in Math. 1812 (2003) 1–52. [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Clarendon Press, Oxford (2000). [Google Scholar]
  4. S. Angenent, S. Haker and A. Tannenbaum, Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal. 35 (2003) 61–97. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Aronson, L.C. Evans and Y. Wu, Fast/slow diffusion and growing sandpiles. J. Diff. Eqns. 131 (1996) 304–335. [Google Scholar]
  6. C. Bahriawati and C. Carstensen, Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5 (2005) 333–361. [Google Scholar]
  7. J.W. Barrett and L. Prigozhin, Dual formulations in critical state problems. Interfaces Free Boundaries 8 (2006) 347–368. [Google Scholar]
  8. J.W. Barrett and L. Prigozhin, Partial L1 Monge-Kantorovich problem: variational formulation and numerical approximation. (Submitted). [Google Scholar]
  9. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Bouchitté, G. Buttazzo and P. Seppecher, Shape optimization solutions via Monge-Kantorovich equation. C.R. Acad. Sci. Paris 324-I (1997) 1185–1191. [Google Scholar]
  11. L.A. Caffarelli and R.J. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems. Ann. Math. (to appear). [Google Scholar]
  12. R. De Arcangelis and E. Zappale, The relaxation of some classes of variational integrals with pointwise continuous-type gradient constraints. Appl. Math. Optim. 51 (2005) 251–277. [CrossRef] [MathSciNet] [Google Scholar]
  13. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). [Google Scholar]
  14. L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, C.B.M.S. 74. AMS, Providence RI (1990). [Google Scholar]
  15. L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current Developments in Mathematics. Int. Press, Boston (1997) 65–126. [Google Scholar]
  16. L.C. Evans and W. Gangbo, Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem. Mem. Amer. Math. Soc. 137 (1999). [Google Scholar]
  17. M. Farhloul, A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18 (1998) 121–132. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Farhloul and H. Manouzi, On a mixed finite element method for the p-Laplacian. Can. Appl. Math. Q. 8 (2000) 67–78. [CrossRef] [Google Scholar]
  19. M. Feldman, Growth of a sandpile around an obstacle, in Monge Ampere Equation: Applications to Geometry and Optimization, L.A Caffarelli and M. Milman Eds., Contemp. Math. 226, AMS, Providence (1999) 55–78. [Google Scholar]
  20. G.B. Folland, Real Analysis: Modern Techniques and their Applications (Second Edition). Wiley-Interscience, New York (1984). [Google Scholar]
  21. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin (1986). [Google Scholar]
  22. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Massachusetts (1985). [Google Scholar]
  23. A. Pratelli, Equivalence between some definitions for the optimal mass transport problem and for transport density on manifolds. Ann. Mat. Pura Appl. 184 (2005) 215–238. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Prigozhin, Variational model for sandpile growth. Eur. J. Appl. Math. 7 (1996) 225–235. [Google Scholar]
  25. L. Prigozhin, Solutions to Monge-Kantorovich equations as stationary points of a dynamical system. arXiv:math.OC/0507330, 0507330 (2005). [Google Scholar]
  26. L. Rüschendorf and L. Uckelmann, Numerical and analytical results for the transportation problem of Monge-Kantorovich. Metrika 51 (2000) 245–258. [CrossRef] [MathSciNet] [Google Scholar]
  27. G. Strang, L1 and L approximation of vector fields in the plane. Lecture Notes in Num. Appl. Anal. 5 (1982) 273–288. [Google Scholar]
  28. C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58. AMS, Providence RI (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you