Free Access
Volume 41, Number 6, November-December 2007
Page(s) 1021 - 1039
Published online 15 December 2007
  1. C. Canuto and P. Pietra, Boundary interface conditions within a finite element preconditioner for spectral methods. J. Comput. Phys. 91 (1990) 310–343. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Canuto and A. Quarteroni, Spectral and pseudo-spectral methods for parabolic problems with nonperiodic boundary conditions. Calcolo 18 (1981) 197–218. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. Springer, New York (1988). [Google Scholar]
  4. L. Fatone, D. Funaro and G.J. Yoon, A convergence analysis for the superconsistent Chebyshev method. Appl. Num. Math. (2007) (to appear). [Google Scholar]
  5. D. Funaro, Polynomial Approximation of Differential Equations, Lecture Notes in Physics 8. Springer, Heidelberg (1992). [Google Scholar]
  6. D. Funaro, Some remarks about the collocation method on a modified Legendre grid. J. Comput. Appl. Math. 33 (1997) 95–103. [Google Scholar]
  7. D. Funaro, Spectral Elements for Transport-Dominated Equations, Lecture Notes in Computational Science and Engineering 1. Springer (1997). [Google Scholar]
  8. D. Funaro, A superconsistent Chebyshev collocation method for second-order differential operators. Numer. Algorithms 28 (2001) 151–157. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Funaro, Superconsistent discretizations. J. Scientific Computing 17 (2002) 67–80. [CrossRef] [Google Scholar]
  10. D. Gottlieb, M.Y. Hussaini and S.A. Orszag, Theory and application of spectral methods, in Spectral Methods for Partial Differential Equations, R.G. Voigt, D. Gottlieb and M.Y. Hussaini Eds., SIAM, Philadelphia (1984). [Google Scholar]
  11. P. Haldenwang, G. Labrosse, S. Abboudi and M. Deville, Chebyshev 3-D spectral and 2-D pseudospectral solvers for the Helhmoltz equation. J. Comput. Phys. 55 (1981) 115–128. [CrossRef] [Google Scholar]
  12. T. Kilgore, A characterization of the Lagrange interpolation projections with minimal Tchebycheff norm. J. Approximation Theory 24 (1978) 273–288. [CrossRef] [Google Scholar]
  13. D.H. Kim, K.H. Kwon, F. Marcellán and S.B. Park, On Fourier series of a discrete Jacobi-Sobolev inner product. J. Approximation Theory 117 (2002) 1–22. [CrossRef] [Google Scholar]
  14. S.D. Kim and S.V. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations. SIAM J. Numer. Anal. 33 (1996) 2375–2400. [CrossRef] [MathSciNet] [Google Scholar]
  15. S.D. Kim and S.V. Parter, Preconditioning Chebyshev spectral collocation by finite-difference operators. SIAM J. Numer. Anal. 34 (1997) 939–958. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Marcellán, B.P. Osilenker and I.A. Rocha, Sobolev-type orthogonal polynomials and their zeros. Rendiconti di Matematica 17 (1997) 423–444. [Google Scholar]
  17. E.H. Mund, A short survey on preconditioning techniques in spectral calculations. Appl. Num. Math. 33 (2000) 61–70. [CrossRef] [Google Scholar]
  18. S.A. Orszag, Spectral methods for problems in complex geometries. J. Comput. Phys. 37 (1980) 70–92. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Szegö, Orthogonal Polynomials. American Mathematical Society, New York (1939). [Google Scholar]
  20. L.N. Trefethen and M. Embree, Spectra and Pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you