Free Access
Volume 42, Number 1, January-February 2008
Page(s) 1 - 23
DOI https://doi.org/10.1051/m2an:2007054
Published online 12 January 2008
  1. K. Afanasiev and M. Hinze, Adaptive control of a wake flow using proper orthogonal decomposition, in Lecture Notes in Pure and Applied Mathematics 216, Marcel Dekker (2001) 317–332. [Google Scholar]
  2. E. Arian, M. Fahl and E. Sachs, Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000). [Google Scholar]
  3. P. Astrid, S. Weiland, K. Willcox and T. Backx, Missing point estimation in models described by proper orthogonal decomposition, in 43rd IEEE Conference on Decision and Control, Paradise Island, Bahamas (2004). [Google Scholar]
  4. H.T. Banks, M.L. Joyner, B. Winchesky and W.P. Winfree, Nondestructive evaluation using a reduced-order computational methodology. Inverse Problems 16 (2000) 1–17. [Google Scholar]
  5. G. Berkooz, P. Holmes and J.L. Lumley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, Cambridge University Press (1996). [Google Scholar]
  6. P. Constantin and C.Foias, Navier-Stokes Equations. Chicago Lectures in Mathematics, University of Chicago Press, Chicago (1989). [Google Scholar]
  7. M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. S. Gugercin and A.C. Antoulas, A survey of model reduction by balanced truncation and some new results. Int. J. Control 77 (2004) 748–766. [CrossRef] [Google Scholar]
  9. T. Henri, Réduction de modéles par des méthodes de décomposition orthogonal propre. Ph.D. thesis, Université de Rennes, France (2004). [Google Scholar]
  10. C. Homescu, L.R. Petzold and R. Serban, Error estimation for reduced order models of dynamical systems. SIAM J. Numer. Anal. 43 (2005) 1693–1714. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Ito and S.S. Ravindran, Reduced basis method for unsteady viscous flows. Int. J. Comp. Fluid Dynam. 15 (2001) 97–113. [Google Scholar]
  12. K. Kunisch and S. Volkwein, Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition. J. Optim. Theor. Appl. 102 (1999) 345–371. [Google Scholar]
  13. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics. SIAM J. Numer. Anal. 40 (2002) 92–515. [Google Scholar]
  14. K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dynam. Syst. 4 (2004) 701–722. [Google Scholar]
  15. S. Lall, J.E. Marsden and S. Glavaški, A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int. J. Robust Nonlinear Control 12 (2002) 519–535. [CrossRef] [Google Scholar]
  16. H.V. Ly and H.T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quarterly Appl. Math. 60 (2002) 631–656. [Google Scholar]
  17. H. Maurer and J. Zowe, First and second order necessary and sufficient optimality conditions for infinite-dimensional programming problems. Math. Programming 16 (1979) 98–110. [Google Scholar]
  18. B.C. Moore, Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans. Automatic Control AC-26 (1981) 17–31. [Google Scholar]
  19. S.S. Ravindran, Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 23 (2002) 1924–1942. [CrossRef] [MathSciNet] [Google Scholar]
  20. D.V. Rovas, L. Machiels and Y. Maday, Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423–445. [CrossRef] [MathSciNet] [Google Scholar]
  21. C.W. Rowley, Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifurcation Chaos 15 (2005) 997–1013. [Google Scholar]
  22. L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III. Quarterly Appl. Math. XLV (1987) 561–590. [Google Scholar]
  23. K.Y. Tan, W.R. Graham and J. Peraire, Active flow control using a reduced order model and optimum control. AIAA (1996). [Google Scholar]
  24. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Verlag, Berlin (1988). [Google Scholar]
  25. S. Volkwein, Second-order conditions for boundary control problems of the Burgers equation. Control Cybern. 30 (2001) 249–278. [Google Scholar]
  26. S. Volkwein, Boundary control of the Burgers equation: optimality conditions and reduced-order approach, in Optimal Control of Complex Structures, K.-H. Hoffmann, I. Lasiecka, G. Leugering, J. Sprekels and F. Tröltzsch Eds., International Series of Numerical Mathematics 139 (2001) 267–278. [Google Scholar]
  27. S. Volkwein, Lagrange-SQP techniques for the control constrained optimal boundary control problems for the Burgers equation. Comput. Optim. Appl. 26 (2003) 253–284. [CrossRef] [MathSciNet] [Google Scholar]
  28. K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition, in 15th AIAA Computational Fluid Dynamics Conference, Anaheim, USA (June 2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you