Free Access
Issue |
ESAIM: M2AN
Volume 42, Number 1, January-February 2008
|
|
---|---|---|
Page(s) | 25 - 55 | |
DOI | https://doi.org/10.1051/m2an:2007053 | |
Published online | 12 January 2008 |
- R. Balasubramaniam and K. Mutsuto, Lagrangian finite element analysis applied to viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7 (1987) 953–984. [CrossRef] [Google Scholar]
- R.E. Bank and R.F. Santos, Analysis of some moving space-time finite element methods. SIAM J. Numer. Anal. 30 (1993) 1–18. [Google Scholar]
- M. Bause and P. Knabner, Uniform error analysis for Lagrange-Galerkin approximations of convection-dominated problems. SIAM J. Numer. Anal. 39 (2002) 1954–1984 (electronic). [Google Scholar]
- J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comp. 71 (2002) 147–156 (electronic). [Google Scholar]
- N.N. Carlson and K. Miller, Design and application of a gradient-weighted moving finite element code. II. In two dimensions. SIAM J. Sci. Comput. 19 (1998) 766–798 (electronic). [Google Scholar]
- C. Carstensen, Merging the Bramble-Pasciak-Steinbach and the Crouzeix-Thomée criterion for H1-stability of the L2-projection onto finite element spaces. Math. Comp. 71 (2002) 157–163 (electronic). [Google Scholar]
- K. Chrysafinos and J.N. Walkington, Error estimates for the discontinuous Galerkin methods for implicit parabolic equations. SIAM J. Numer. Anal. 43 (2006) 2478–2499. [Google Scholar]
- K. Chrysafinos and J.N. Walkington, Error estimates for the discontinuous Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 44 (2006) 349–366. [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland (1978). [Google Scholar]
- P. Constantin, An Eulerian-Lagrangian approach for incompressible fluids: local theory. J. Amer. Math. Soc. 14 (2001) 263–278 (electronic). [Google Scholar]
- P. Constantin, An Eulerian-Lagrangian approach to the Navier-Stokes equations. Comm. Math. Phys. 216 (2001) 663–686. [Google Scholar]
- M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry. Springer (2000). [Google Scholar]
- J. Douglas, Jr., and T.F. Russell, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871–885. [Google Scholar]
- T.F. Dupont and Y. Liu, Symmetric error estimates for moving mesh Galerkin methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2002) 914–927 (electronic). [Google Scholar]
- M. Falcone and R. Ferretti, Convergence analysis for a class of high-order semi-Lagrangian advection schemes. SIAM J. Numer. Anal. 35 (1998) 909–940 (electronic). [Google Scholar]
- Y. Liu, R.E. Bank, T.F. Dupont, S. Garcia and R.F. Santos, Symmetric error estimates for moving mesh mixed methods for advection-diffusion equations. SIAM J. Numer. Anal. 40 (2003) 2270–2291. [Google Scholar]
- I. Malcevic and O. Ghattas, Dynamic-mesh finite element method for Lagrangian computational fluid dynamics. Finite Elem. Anal. Des. 38 (2002) 965–982. [Google Scholar]
- H. Masahiro, H. Katsumori and K. Mutsuto, Lagrangian finite element method for free surface Navier-Stokes flow using fractional step methods. Int. J. Numer. Methods Fluids 13 (1991) 841–855. [CrossRef] [Google Scholar]
- K. Miller, Moving finite elements. II. SIAM J. Numer. Anal. 18 (1981) 1033–1057. [Google Scholar]
- K. Miller and R.N. Miller, Moving finite elements. I. SIAM J. Numer. Anal. 18 (1981) 1019–1032. [Google Scholar]
- K.W. Morton, A. Priestley and E. Süli, Stability of the Lagrange-Galerkin method with nonexact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625–653. [Google Scholar]
- J. Ruppert, A new and simple algorithm for quality 2-dimensional mesh generation, in Third Annual ACM-SIAM Symposium on Discrete Algorithms (1992) 83–92. [Google Scholar]
- V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics 25. Springer-Verlag, Berlin (1997). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.