Free Access
Issue
ESAIM: M2AN
Volume 42, Number 4, July-August 2008
Page(s) 609 - 644
DOI https://doi.org/10.1051/m2an:2008020
Published online 05 June 2008
  1. Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799–826. [CrossRef] [MathSciNet] [Google Scholar]
  2. V.I. Arnold, Ordinary Differential Equations. Springer-Verlag, Berlin, Germany (1992). [Google Scholar]
  3. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15. Springer-Verlag, New York, USA (1994). [Google Scholar]
  4. P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam, Netherlands (1988). [Google Scholar]
  5. P.G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Engrg. 1 (1972) 217–249. [Google Scholar]
  6. J. Donea, S. Giuliani and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Engrg. 33 (1982) 689–723. [Google Scholar]
  7. F. Duarte, R. Gormaz and S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Engrg. 193 (2004) 4819–4836. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Farhat, M. Lesoinne and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Internat. J. Numer. Methods Fluids 21 (1995) 807–835 [Google Scholar]
  9. M.A. Fernández, J.-F. Gerbeau and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Internat. J. Numer. Methods Engrg. 69 (2007) 794–821. [Google Scholar]
  10. L. Formaggia and F. Nobile, A stability analysis for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999) 105–132. [MathSciNet] [Google Scholar]
  11. L. Gastaldi, A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9 (2001) 123–156. [MathSciNet] [Google Scholar]
  12. V. Girault, H. López and B. Maury, One time-step finite element discretization of the equation of motion of two fluid flows. Numer. Methods Partial Differ. Equ. 22 (2005) 680–707. [CrossRef] [Google Scholar]
  13. R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Engrg. 184 (2000) 241–267. [CrossRef] [MathSciNet] [Google Scholar]
  14. C. Grandmont and Y. Maday, Fluid-structure interaction: a theoretical point of view, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London (2003) 1–22. [Google Scholar]
  15. C. Grandmont, V. Guimet and Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction. Math. Models Methods Appl. Sci. 11 (2001) 1349–1377. [CrossRef] [MathSciNet] [Google Scholar]
  16. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985). [Google Scholar]
  17. H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335–352. [Google Scholar]
  18. T.J.R. Hughes, W.K. Liu and T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg. 29 (1981) 329–349. [Google Scholar]
  19. I. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 303–319. [MathSciNet] [Google Scholar]
  20. J. Janela, A. Lefebvre and B. Maury, A penalty method for the simulation of fluid-rigid body interaction. ESAIM: Proc. 14 (2005) 115–123. [Google Scholar]
  21. M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes equations with a free surface. Int. J. Comput. Fluid Dyn. 6 (1996) 175–188. [CrossRef] [Google Scholar]
  23. B. Maury, Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys. 156 (1999) 325–351. [CrossRef] [MathSciNet] [Google Scholar]
  24. B. Maury and R. Glowinski, Fluid-particle flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1079–1084. [Google Scholar]
  25. J. Nitsche, Finite element approximations for solving the elastic problem, in Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975), Part 1, Lecture Notes in Econom. and Math. Systems 134, Springer-Verlag, Berlin, Germany (1976) 154–167. [Google Scholar]
  26. O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38 (1982) 309–332. [CrossRef] [Google Scholar]
  27. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17 (2007) 957–983. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Rannacher, On finite element approximation of general boundary value problems in nonlinear elasticity. Calcolo 17 (1980) 175–193. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak, Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system. SIAM J. Numer. Anal. 43 (2005) 1539–1571. [Google Scholar]
  30. J. San Martín, L. Smaranda and T. Takahashi, Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time. Prépublication de l'Institut Élie Cartan de Nancy 17 (2006) http://hal.archives-ouvertes.fr/hal-00275223/. [Google Scholar]
  31. E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53 (1988) 459–483. [CrossRef] [MathSciNet] [Google Scholar]
  32. T. Takahashi, Analysis of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you