Highlight
Free Access
Issue
ESAIM: M2AN
Volume 42, Number 4, July-August 2008
Page(s) 593 - 607
DOI https://doi.org/10.1051/m2an:2008018
Published online 27 May 2008
  1. P. Ciarlet, The Finite Element Method for Elliptic Problem. North Holland (1975). [Google Scholar]
  2. B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
  3. B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16 (2001) 173–261. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. G.-S. Jiang and C.-W. Shu, On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62 (1994) 531–538. [CrossRef] [MathSciNet] [Google Scholar]
  7. Y.J. Liu, Central schemes on overlapping cells. J. Comput. Phys. 209 (2005) 82–104. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y.J. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45 (2007) 2442–2467. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Qiu, B.C. Khoo and C.-W. Shu, A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys. 212 (2006) 540–565. [Google Scholar]
  11. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Zhang and C.-W. Shu, An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13 (2003) 395–413. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Zhang and C.-W. Shu, An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34 (2005) 581–592. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you