Free Access
Issue
ESAIM: M2AN
Volume 42, Number 5, September-October 2008
Page(s) 749 - 775
DOI https://doi.org/10.1051/m2an:2008028
Published online 30 July 2008
  1. J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal. 41 (2003) 1427–1464. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett, R. Nürnberg and M.R.E. Warner, Finite element approximation of soluble surfactant spreading on a thin film. SIAM J. Numer. Anal. 44 (2006) 1218–1247. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.D. Danov, V.N. Paunov, S.D. Stoyanov, N. Alleborn, H. Raszillier and F. Durst, Stability of evaporating two-layered liquid film in the presence of surfactant - ii Linear analysis. Chem. Eng. Sci. 53 (1998) 2823–2837. [CrossRef] [Google Scholar]
  5. H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37 (2006) 2025–2048. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Grün, On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comp. 72 (2003) 1251–1279. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Renardy, A singularly perturbed problem related to surfactant spreading on thin films. Nonlinear Anal. 27 (1996) 287–296. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Renardy and R.C. Rogers, An Introduction to Partial Differential Equations. Springer-Verlag, New York, 1992. [Google Scholar]
  10. A. Schmidt and K.G. Siebert, ALBERT—software for scientific computations and applications. Acta Math. Univ. Comenian. (N.S.) 70 (2000) 105–122. [MathSciNet] [Google Scholar]
  11. A. Sheludko, Thin liquid films. Adv. Colloid Interface Sci. 1 (1967) 391–464. [Google Scholar]
  12. L. Zhornitskaya and A.L. Bertozzi, Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000) 523–555. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you