Free Access
Volume 42, Number 5, September-October 2008
Page(s) 749 - 775
Published online 30 July 2008
  1. J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet]
  2. J.W. Barrett, H. Garcke and R. Nürnberg, Finite element approximation of surfactant spreading on a thin film. SIAM J. Numer. Anal. 41 (2003) 1427–1464. [CrossRef] [MathSciNet]
  3. J.W. Barrett, R. Nürnberg and M.R.E. Warner, Finite element approximation of soluble surfactant spreading on a thin film. SIAM J. Numer. Anal. 44 (2006) 1218–1247. [CrossRef] [MathSciNet]
  4. K.D. Danov, V.N. Paunov, S.D. Stoyanov, N. Alleborn, H. Raszillier and F. Durst, Stability of evaporating two-layered liquid film in the presence of surfactant - ii Linear analysis. Chem. Eng. Sci. 53 (1998) 2823–2837. [CrossRef]
  5. H. Garcke and S. Wieland, Surfactant spreading on thin viscous films: nonnegative solutions of a coupled degenerate system. SIAM J. Math. Anal. 37 (2006) 2025–2048. [CrossRef] [MathSciNet]
  6. G. Grün, On the convergence of entropy consistent schemes for lubrication type equations in multiple space dimensions. Math. Comp. 72 (2003) 1251–1279. [CrossRef] [MathSciNet]
  7. G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. [CrossRef] [MathSciNet]
  8. M. Renardy, A singularly perturbed problem related to surfactant spreading on thin films. Nonlinear Anal. 27 (1996) 287–296. [CrossRef] [MathSciNet]
  9. M. Renardy and R.C. Rogers, An Introduction to Partial Differential Equations. Springer-Verlag, New York, 1992.
  10. A. Schmidt and K.G. Siebert, ALBERT—software for scientific computations and applications. Acta Math. Univ. Comenian. (N.S.) 70 (2000) 105–122. [MathSciNet]
  11. A. Sheludko, Thin liquid films. Adv. Colloid Interface Sci. 1 (1967) 391–464. [CrossRef]
  12. L. Zhornitskaya and A.L. Bertozzi, Positivity preserving numerical schemes for lubrication-type equations. SIAM J. Numer. Anal. 37 (2000) 523–555. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you