Free Access
Volume 42, Number 5, September-October 2008
Page(s) 777 - 819
Published online 30 July 2008
  1. K. Babenko, Approximation by trigonometric polynomials is a certain class of periodic functions of several variables. Soviet Math. Dokl. 1 (1960) 672–675. Russian original in Dokl. Akad. Nauk SSSR 132 (1960) 982–985. [MathSciNet] [Google Scholar]
  2. J.W. Barrett and E. Süli, Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [Google Scholar]
  3. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005) 939–983. [Google Scholar]
  4. R.F. Bass, Diffusion and Elliptic Operators. Springer-Verlag, New York (1997). [Google Scholar]
  5. T.S. Blyth and E.F. Robertson, Further Linear Algebra. Springer-Verlag, London (2002). [Google Scholar]
  6. H.-J. Bungartz, Finite elements of higher order on sparse grids. Habilitation thesis, Informatik, TU München, Aachen: Shaker Verlag (1998). [Google Scholar]
  7. H.-J. Bungartz and M. Griebel, Sparse grids. Acta Numer. 13 (2004) 1–123. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. DeVore, S. Konyagin and V. Temlyakov, Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1–26. [Google Scholar]
  9. J. Dick, I.H. Sloan, X. Wang and H. Woźniakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103 (2006) 63–97. [CrossRef] [MathSciNet] [Google Scholar]
  10. J. Elf, P. Lötstedt and P. Sjöberg, Problems of high dimension in molecular biology, in Proceedings of the 19th GAMM-Seminar Leipzig, W. Hackbusch Ed. (2003) 21–30. [Google Scholar]
  11. M. Griebel, Sparse grids and related approximation schemes for higher dimensional problems, in Foundations of Computational Mathematics 2005, L.-M. Pardo, A. Pinkus, E. Süli, M. Todd Eds., Cambridge University Press (2006) 106–161. [Google Scholar]
  12. V.H. Hoang and C. Schwab, High dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3 (2005) 168–194. [Google Scholar]
  13. L. Hörmander, The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer-Verlag, Berlin, Reprint of the 1983 edition (2005). [Google Scholar]
  14. P. Houston and E. Süli, Stabilized hp-finite element approximation of partial differential equations with non-negative characteristic form. Computing 66 (2001) 99–119. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Houston, C. Schwab and E. Süli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39 (2002) 2133–2163. [CrossRef] [MathSciNet] [Google Scholar]
  16. B. Lapeyre, É. Pardoux and R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations, Oxford Texts in Applied and Engineering Mathematics. Oxford University Press, Oxford (2003). [Google Scholar]
  17. P. Laurençot and S. Mischler, The continuous coagulation fragmentation equations with diffusion. Arch. Rational Mech. Anal. 162 (2002) 45–99. [CrossRef] [Google Scholar]
  18. C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with W1,1 velocities and applications. Annali di Matematica 183 (2004) 97–130. [Google Scholar]
  19. E. Novak and K. Ritter, The curse of dimension and a universal method for numerical integration, in Multivariate Approximation and Splines, G. Nürnberger, J. Schmidt and G. Walz Eds., International Series in Numerical Mathematics, Birkhäuser, Basel (1998) 177–188. [Google Scholar]
  20. O.A. Oleĭnik and E.V. Radkevič, Second Order Equations with Nonnegative Characteristic Form. American Mathematical Society, Providence, RI (1973). [Google Scholar]
  21. H.-C. Öttinger, Stochastic Processes in Polymeric Fluids. Springer-Verlag, New York (1996). [Google Scholar]
  22. H.-G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion and Flow Problems, Springer Series in Computational Mathematics 24. Springer-Verlag, New York (1996). [Google Scholar]
  23. C. Schwab, p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics, Numerical Methods and Scientific Computation. Clarendon Press, Oxford (1998). [Google Scholar]
  24. S. Smolyak, Quadrature and interpolation formulas for products of certain classes of functions. Soviet Math. Dokl. 4 (1963) 240–243. Russian original in Dokl. Akad. Nauk SSSR 148 (1963) 1042–1045. [Google Scholar]
  25. E. Süli, Finite element approximation of high-dimensional transport-dominated diffusion problems, in Foundations of Computational Mathematics 2005, L.-M. Pardo, A. Pinkus, E. Süli, M. Todd Eds., Cambridge University Press (2006) 343–370. Available at: [Google Scholar]
  26. E. Süli, Finite element algorithms for transport-diffusion problems: stability, adaptivity, tractability, in Invited Lecture at the International Congress of Mathematicians, Madrid, 22–30 August 2006. Available at: [Google Scholar]
  27. V. Temlyakov, Approximation of functions with bounded mixed derivative, in Proc. Steklov Inst. of Math. 178, American Mathematical Society, Providence, RI (1989). [Google Scholar]
  28. N.G. van Kampen, Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1992). [Google Scholar]
  29. T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93–128. [CrossRef] [EDP Sciences] [Google Scholar]
  30. G. Wasilkowski and H. Woźniakowski, Explicit cost bounds of algorithms for multivariate tensor product problems. J. Complexity 11 (1995) 1–56. [CrossRef] [MathSciNet] [Google Scholar]
  31. C. Zenger, Sparse grids, in Parallel Algorithms for Partial Differential Equations, W. Hackbusch Ed., Notes on Numerical Fluid Mechanics 31, Vieweg, Braunschweig/Wiesbaden (1991). [Google Scholar]
  32. G.W. Zumbusch, A sparse grid PDE solver, in Advances in Software Tools for Scientific Computing, H.P. Langtangen, A.M. Bruaset and E. Quak Eds., Lecture Notes in Computational Science and Engineering 10, Springer, Berlin (Proceedings SciTools '98) (2000) 133–177. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you