Highlight
Free Access
Issue
ESAIM: M2AN
Volume 42, Number 5, September-October 2008
Page(s) 851 - 885
DOI https://doi.org/10.1051/m2an:2008029
Published online 30 July 2008
  1. T.B. Anderson and R. Jackson, A fluid-dynamical description of fluidized beds: Equations of motion. Ind. Eng. Chem. Fundam. 6 (1967) 527–539. [CrossRef] [Google Scholar]
  2. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet] [Google Scholar]
  3. D. Bale, R.J. LeVeque, S. Mitran and J.A. Rossmanith, A wave-propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955–978. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Birkhäuser-Verlag (2004). [Google Scholar]
  5. F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Comm. Math. Sci. 2 (2004) 359–389. [Google Scholar]
  6. M.J. Castro, J. Macías and C. Parés, A Q-scheme for a class of systems of coupled conservation laws with source term. Application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107–127. [CrossRef] [EDP Sciences] [Google Scholar]
  7. M.J. Castro, J.A. García Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [CrossRef] [MathSciNet] [Google Scholar]
  8. R.P. Denlinger and R.M. Iverson, Flow of variably fluidized granular masses across three-dimensional terrain: 2. Numerical predictions and experimental tests. J. Geophys. Res. 106 (2001) 553–566. [CrossRef] [Google Scholar]
  9. R.P. Denlinger and R.M. Iverson, Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J. Geophys. Res. 109 (2004) F01014, doi:10.1029/2003JF000085. [CrossRef] [Google Scholar]
  10. T. Gallouët, J.-M Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479–513. [CrossRef] [MathSciNet] [Google Scholar]
  11. D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, New York (1994). [Google Scholar]
  12. E. Godlewski and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York (1996). [Google Scholar]
  13. L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl. 39 (2000) 135–159. [CrossRef] [MathSciNet] [Google Scholar]
  14. N. Goutal and F. Maurel, Proceedings of the 2nd Workshop on Dam-Break Wave Simulation. Technical report EDF-DER Report HE-43/97/016/B, Chatou, France (1997). [Google Scholar]
  15. J.M.N.T. Gray, M. Wieland and K. Hutter, Gravity driven free surface flow of granular avalanches over complex basal topography. Proc. R. Soc. London S. A 455 (1999) 1841–1874. [CrossRef] [Google Scholar]
  16. J.M. Greenberg and A.Y. LeRoux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  17. A. Harten and J.M. Hyman, Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50 (1983) 235–269. [CrossRef] [MathSciNet] [Google Scholar]
  18. K. Hutter, M. Siegel, S.B. Savage and Y. Nohguchi, Two-dimensional spreading of a granular avalanche down an inclined plane, part I. Theory. Acta Mech. 100 (1993) 37–68. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.M. Iverson, The physics of debris flows. Rev. Geophys. 35 (1997) 245–296. [CrossRef] [Google Scholar]
  20. R.M. Iverson and R.P. Denlinger, Flow of variably fluidized granular masses across three-dimensional terrain: 1, Coulomb mixture theory. J. Geophys. Res. 106 (2001) 537–552. [CrossRef] [Google Scholar]
  21. R.M. Iverson, M. Logan and R.P. Denlinger, Granular avalanches across irregular three-dimensional terrain: 2, Experimental tests. J. Geophys. Res. 109 (2004) F01015, doi:10.1029/2003JF000084. [CrossRef] [Google Scholar]
  22. F. Legros, The mobility of long-runout landslides. Eng. Geol. 63 (2002) 301–331. [CrossRef] [Google Scholar]
  23. R.J. LeVeque, clawpack. http://www.amath.washington.edu/ claw+. [Google Scholar]
  24. R.J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems. J. Comput. Phys. 131 (1997) 327–353. [NASA ADS] [CrossRef] [Google Scholar]
  25. R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: The quasi-steady wave-propagation algorithm. J. Comput. Phys. 146 (1998) 346–365. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  26. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002). [Google Scholar]
  27. R.J. LeVeque and D.L. George, High-resolution finite volume methods for the shallow water equations with bathymetry and dry states, in Proceedings of Long-Wave Workshop, Catalina, 2004, P.L.-F. Liu, H. Yeh and C. Synolakis Eds., Advances Numerical Models for Simulating Tsunami Waves and Runup, Advances in Coastal and Ocean Engineering 10, World Scientific (2008) 43–73. [Google Scholar]
  28. R.J. LeVeque and M. Pelanti, A class of approximate Riemann solvers and their relation to relaxation schemes. J. Comput. Phys. 172 (2001) 572–591. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Mangeney, F. Bouchut, N. Thomas, J.-P. Vilotte and M.-O. Bristeau, Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112 (2007) F02017, doi:10.1029/2006JF000469. [CrossRef] [Google Scholar]
  30. A. Mangeney-Castelnau, J.-P. Vilotte, M.-O. Bristeau, B. Perthame, F. Bouchut, C. Simeoni and S. Yernini, Numerical modeling of avalanches based on Saint-Venant equations using a kinetic scheme. J. Geophys. Res. 108 (2003) 2527, doi:10.1029/2002JB002024. [CrossRef] [Google Scholar]
  31. A. Mangeney-Castelnau, F. Bouchut, J.-P. Vilotte, E. Lajeunesse, A. Aubertin and M. Pirulli, On the use of Saint-Venant equations to simulate the spreading of a granular mass. J. Geophys. Res. 110 (2005) B09103, doi:10.1029/2004JB003161. [CrossRef] [Google Scholar]
  32. M. Massoudi, Constitutive relations for the interaction force in multicomponent particulate flows. Int. J. Non-Linear Mech. 38 (2003) 313–336. [CrossRef] [Google Scholar]
  33. S. Noelle, N. Pankratz, G. Puppo and J.R. Natvig, Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006) 474–499. [CrossRef] [MathSciNet] [Google Scholar]
  34. C. Parés and M.J. Castro, On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems. ESAIM: M2AN 38 (2004) 821–852. [CrossRef] [EDP Sciences] [Google Scholar]
  35. A.K. Patra, A.C. Bauer, C.C. Nichita, E.B. Pitman, M.F. Sheridan, M. Bursik, B. Rupp, A. Webber, A.J. Stinton, L.M. Namikawa and C.S. Renschler, Parallel adaptive numerical simulation of dry avalanches over natural terrain. J. Volcanology Geotherm. Res. 139 (2005) 1–21. [CrossRef] [Google Scholar]
  36. M. Pelanti, Wave Propagation Algorithms for Multicomponent Compressible Flows with Applications to Volcanic Jets. Ph.D. thesis, University of Washington, USA (2005). [Google Scholar]
  37. M. Pelanti and R.J. LeVeque, High-resolution finite volume methods for dusty gas jets and plumes. SIAM J. Sci. Comput. 28 (2006) 1335–1360. [CrossRef] [MathSciNet] [Google Scholar]
  38. E.B. Pitman and L. Le, A two-fluid model for avalanche and debris flows. Phil. Trans. R. Soc. A 363 (2005) 1573–1601. [CrossRef] [Google Scholar]
  39. E.B. Pitman, C.C. Nichita, A.K. Patra, A.C. Bauer, M.F. Sheridan and M. Bursik, Computing granular avalanches and landslides. Phys. Fluids 15 (2003) 3638–3646. [CrossRef] [MathSciNet] [Google Scholar]
  40. S.P. Pudasaini and K. Hutter, Rapid shear flows of dry granular masses down curved and twisted channels. J. Fluid Mech. 495 (2003) 193–208. [CrossRef] [MathSciNet] [Google Scholar]
  41. S.P. Pudasaini, Y. Wang and K. Hutter, Modelling debris flows down general channels. Natural Hazards and Earth System Sciences 5 (2005) 799–819. [CrossRef] [Google Scholar]
  42. S.P. Pudasaini, Y. Wang and K. Hutter, Rapid motions of free-surface avalanches down curved and twisted channels and their numerical simulations. Phil. Trans. R. Soc. A 363 (2005) 1551–1571. [CrossRef] [Google Scholar]
  43. W.J.M. Rankine, On the stability of loose earth. Phil. Trans. R. Soc. 147 (1857) 9–27. [CrossRef] [Google Scholar]
  44. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  45. S.B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid. Mech. 199 (1989) 177–215. [CrossRef] [MathSciNet] [Google Scholar]
  46. S.B. Savage and K. Hutter, The dynamics of avalanches of granular materials from initiation to runout, part I. Analysis. Acta Mech. 86 (1991) 201–223. [CrossRef] [MathSciNet] [Google Scholar]
  47. I. Suliciu, On modelling phase transitions by means of rate-type constitutive equations, shock wave structure. Internat. J. Engrg. Sci. 28 (1990) 829–841. [CrossRef] [MathSciNet] [Google Scholar]
  48. I. Suliciu, Some stability-instability problems in phase transitions modelled by piecewise linear elastic or viscoelastic constitutive equations. Internat. J. Engrg. Sci. 30 (1992) 483–494. [CrossRef] [MathSciNet] [Google Scholar]
  49. Y.C. Tai, S. Noelle, J.M.N.T. Gray and K. Hutter, Shock-capturing and front-tacking methods for dry granular avalanches. J. Comput. Phys. 175 (2002) 269–301. [CrossRef] [Google Scholar]
  50. E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin, Heidelberg (1997). [Google Scholar]
  51. B.G.M. van Wachem and A.E. Almstedt, Methods for multiphase computational fluid dynamics. Chem. Eng. J. 96 (2003) 81–98. [CrossRef] [Google Scholar]
  52. M.E. Vázquez-Cendón, Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. J. Comput. Phys. 148 (1999) 497–526. [CrossRef] [MathSciNet] [Google Scholar]
  53. P. Vollmöller, A shock-capturing wave-propagation method for dry and saturated granular flows. J. Comput. Phys. 199 (2004) 150–174. [CrossRef] [Google Scholar]
  54. C.B. Vreugdenhil, Two-layer shallow-water flow in two dimensions, a numerical study. J. Comput. Phys. 33 (1979) 169–184. [CrossRef] [MathSciNet] [Google Scholar]
  55. Y. Wang and K. Hutter, A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granul. Matter 1 (1999) 163–181. [CrossRef] [Google Scholar]
  56. Y. Wang and K. Hutter, A constitutive theory of fluid-saturated granular materials and its application in gravitational flows. Rheol. Acta 38 (1999) 214–223. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you