Highlight
Free Access
Issue
ESAIM: M2AN
Volume 42, Number 6, November-December 2008
Page(s) 961 - 990
DOI https://doi.org/10.1051/m2an:2008031
Published online 12 August 2008
  1. G. Allaire, Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. II. Noncritical sizes of the holes for a volume distribution and a surface distribution of holes. Arch. Rational Mech. Anal. 113 (1991) 261–298. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  2. J.L. Berry, A. Santamarina, J.E. Jr. Moore, S. Roychowdhury and W.D. Routh, Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng. 28 (2000) 386–398. [CrossRef] [PubMed] [Google Scholar]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin (1991). [Google Scholar]
  4. A. Brillard, Asymptotic flow of a viscous and incompressible fluid through a plane sieve, in Progress in partial differential equations: calculus of variations, applications (Pont-à-Mousson, 1991), Pitman Res. Notes Math. Ser. 267, Longman Sci. Tech., Harlow (1992) 158–172. [Google Scholar]
  5. E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 2393–2410. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Chapelle and K.J. Bathe, The finite element analysis of shell – Fundamentals. Springer-Verlag (2004). [Google Scholar]
  7. P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. [Google Scholar]
  8. P. Clément, Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9(R-2) (1975) 77–84. [Google Scholar]
  9. R. Codina and J. Blasco, A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation. Comput. Methods Appl. Mech. Engrg. 143 (1997) 373–391. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Conca, Étude d'un fluide traversant une paroi perforée, I. Comportement limite près de la paroi. J. Math. Pures Appl. 66 (1987) 1–43. [MathSciNet] [Google Scholar]
  11. C. Conca, Étude d'un fluide traversant une paroi perforée, II. Comportement limite loin de la paroi. J. Math. Pures Appl. 66 (1987) 45–70. [MathSciNet] [Google Scholar]
  12. C. Conca and M. Sepúlveda, Numerical results in the Stokes sieve problem. Rev. Internac. Métod. Numér. Cálc. Diseñ. Ingr. 5 (1989) 435–452. [Google Scholar]
  13. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York (2004). [Google Scholar]
  14. L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Engrg. 191 (2001) 561–582. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Frey, Yams: A fully automatic adaptive isotropic surface remeshing procedure. Technical report 0252, INRIA, Rocquencourt, France, Nov. (2001). [Google Scholar]
  16. P. Frey, Medit: An interactive mesh visualisation software. Technical report 0253, INRIA, Rocquencourt, France, Dec. (2001). [Google Scholar]
  17. J.-F. Gerbeau and M. Vidrascu, A quasi-Newton algorithm based on a reduced model for fluid structure problems in blood flows. ESAIM: M2AN 37 (2003) 631–647. [CrossRef] [EDP Sciences] [Google Scholar]
  18. J.-F. Gerbeau, M. Vidrascu and P. Frey, Fluid-structure interaction in blood flows on geometries coming from medical imaging. Comput. Struct. 83 (2005) 155–165. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  19. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations – Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). [Google Scholar]
  20. T.J.R. Hughes, L.P. Franca and M. Balestra, A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comp. Meth. App. Mech. Eng. 59 (1986) 85–99. [CrossRef] [MathSciNet] [Google Scholar]
  21. A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulation of the cardiovascular system, in Handbook of Numerical Analysis XII, North-Holland, Amsterdam (2004) 3–127. [Google Scholar]
  22. S. Salmon, M. Thiriet and J.-F. Gerbeau, Medical image-based computational model of pulsatile flow in saccular aneurisms. ESAIM: M2AN 37 (2003) 663–679. [CrossRef] [EDP Sciences] [Google Scholar]
  23. E. Sánchez-Palencia, Problèmes mathématiques liés à l'écoulement d'un fluide visqueux à travers une grille, in Ennio De Giorgi colloquium (Paris, 1983), Res. Notes in Math. 125, Pitman, Boston, USA (1985) 126–138. [Google Scholar]
  24. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54(190) (1990) 483–493. [Google Scholar]
  25. D.A. Steinman, J.S. Milner, C.J. Norley, S.P. Lownie and D.W. Holdsworth, Image-based computational simulation of flow dynamics int a giant intracranial aneurysms. Am. J. Neuroradiol. 24 (2003) 559–566. [Google Scholar]
  26. G.R. Stuhne and D.A. Steinman, Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126 (2004) 382–387. [CrossRef] [PubMed] [Google Scholar]
  27. V. Thomée, Galerkin finite element methods for parabolic problems, Springer Series in Computational Mathematics 25. Springer-Verlag, Berlin, second edition (2006). [Google Scholar]
  28. L. Tobiska and V. Verfurth, Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal. 33 (1996) 107–127. [CrossRef] [MathSciNet] [Google Scholar]
  29. I.E. Vignon-Clementel, C.A. Figueroa, K.E. Jansen and C.A. Taylor, Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3776–3796. [CrossRef] [MathSciNet] [Google Scholar]
  30. N.T. Wang and A.L. Fogelson, Computational methods for continuum models of platelet aggregation. J. Comput. Phys. 151 (1999) 649–675. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you