Free Access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 209 - 238
DOI https://doi.org/10.1051/m2an:2008049
Published online 05 December 2008
  1. J.-M. Bony, Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 265 (1967) 333–336. [Google Scholar]
  2. A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 99–259. [Google Scholar]
  3. X. Chen, Superlinear convergence and smoothing quasi-Newton methods for nonsmooth equations. J. Comput. Appl. Math. 80 (1997) 105–126. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Delfour and J.-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization. Philadelphia (2001). [Google Scholar]
  5. L.C. Evans, A second order elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 4 (1979) 555–572. [CrossRef] [MathSciNet] [Google Scholar]
  6. D. Gilbarg and N.S. Trudinger, Elliptic Differential Equations of Second Order. Springer, New York (1977). [Google Scholar]
  7. M. Hintermüller and K. Kunisch, Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. (to appear). [Google Scholar]
  8. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [CrossRef] [MathSciNet] [Google Scholar]
  9. H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 8 (1983) 317–346. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Ito and K. Kunisch, The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Contr. Opt. 43 (2004) 357–376. [CrossRef] [Google Scholar]
  11. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987). [Google Scholar]
  12. K. Kunisch and J. Sass, Trading regions under proportional transaction costs, in Operations Research Proceedings, U.M. Stocker and K.-H. Waldmann Eds., Springer, New York (2007) 563–568. [Google Scholar]
  13. O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968). [Google Scholar]
  14. S. Shreve and H.M. Soner, Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 (1994) 609–692. [CrossRef] [MathSciNet] [Google Scholar]
  15. K. Stromberg, Introduction to Classical Real Analysis. Wadsworth International, Belmont, California (1981). [Google Scholar]
  16. G. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987). [Google Scholar]
  17. M. Wiegner, The C1,1-character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differ. Equ. 6 (1981) 361–371. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you