Free Access
Volume 43, Number 2, March-April 2009
Page(s) 239 - 275
Published online 07 February 2009
  1. P.M. Adler and J.-F. Thovert, Fractures and Fracture Networks. Kluwer Acad., Amsterdam (1999). [Google Scholar]
  2. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D-meshes. Numer. Methods Partial Differential Equations 23 (2007) 145–195. [Google Scholar]
  3. P. Angot, Finite volume methods for non smooth solution of diffusion models; application to imperfect contact problems, in Recent Advances in Numerical Methods and Applications, O.P. Iliev, M.S. Kaschiev, S.D. Margenov, B.H. Sendov and P.S. Vassilevski Eds., Proc. 4th Int. Conf. NMA'98, Sofia (Bulgarie), World Sci. Pub. (1999) 621–629. [Google Scholar]
  4. P. Angot, A model of fracture for elliptic problems with flux and solution jumps. C. R. Acad. Sci. Paris Ser. I Math. 337 (2003) 425–430. [Google Scholar]
  5. P. Angot, T. Gallouët and R. Herbin, Convergence of finite volume methods on general meshes for non smooth solution of elliptic problems with cracks, in Finite Volumes for Complex Applications II, R. Vilsmeier, F. Benkhaldoun and D. Hänel Eds., Hermès (1999) 215–222. [Google Scholar]
  6. J. Bear, C.-F. Tsang and G. de Marsily, Flow and Contaminant Transport in Fractured Rock. Academic Press, San Diego (1993). [Google Scholar]
  7. B. Berkowitz, Characterizing flow and transport in fractured geological media: A review. Adv. Water Resour. 25 (2002) 861–884. [CrossRef] [Google Scholar]
  8. C. Bernardi, M. Dauge and Y. Maday, Compatibilité de traces aux arêtes et coins d'un polyhèdre. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 679–684. [Google Scholar]
  9. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. (2007) [Google Scholar]
  10. I.I. Bogdanov, V.V. Mourzenko, J.-F. Thovert and P.M. Adler, Effective permeability of fractured porous media in steady-state flow. Water Resour. Res. 107 (2002). [Google Scholar]
  11. F. Boyer and F. Hubert, Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46 (2008) 3032–3070. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Caillabet, P. Fabrie, P. Landereau, B. Noetinger and M. Quintard, Implementation of a finite-volume method for the determination of effective parameters in fissured porous media. Numer. Methods Partial Differential Equations 6 (2000) 237–263. [CrossRef] [Google Scholar]
  13. Y. Caillabet, P. Fabrie, D. Lasseux and M. Quintard, Computation of large-scale parameters for dispersion in fissured porous medium using finite-volume method. Comput. Geosci. 5 (2001) 121–150. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
  15. R. Eymard and T. Gallouët, H-convergence and numerical schemes for elliptic equations. SIAM J. Numer. Anal. 41 (2003) 539–562. [CrossRef] [MathSciNet] [Google Scholar]
  16. R. Eymard, T. Gallouët and R. Herbin, Finite Volume Methods, in Handbook of Numerical Analysis VII, P.G. Ciarlet and J.L. Lions Eds., North-Holland (2000) 713–1020. [Google Scholar]
  17. I. Faille, E. Flauraud, F. Nataf, S. Pégaz-Fiornet, F. Schneider and F. Willien, A new fault model in geological basin modelling. Application of finite volume scheme and domain decomposition methods, in Finite Volumes for Complex Applications III, R. Herbin and D. Kröner Eds., Hermes Penton Sci. (HPS) (2002) 543–550. [Google Scholar]
  18. B. Faybishenko, P.A. Witherspoon and S.M. Benson, Dynamics of Fluids in Fractured Rock, Geophysical Monograph Series 122. American Geophysical Union, Washington D.C. (2000). [Google Scholar]
  19. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman, Advanced Publishing Program, Boston (1985). [Google Scholar]
  20. F. Hermeline, Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Engrg. 192 (2003) 1939–1959. [Google Scholar]
  21. J. Jaffré, V. Martin and J.E. Roberts, Generalized cell-centered finite volume methods for flow in porous media with faults, in Finite Volumes for Complex Applications III, R. Herbin and D. Kröner Eds., Hermes Penton Sci. (HPS) (2002) 357–364. [Google Scholar]
  22. V. Martin, J. Jaffré and J.E. Roberts, Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26 (2005) 1667–1691. [Google Scholar]
  23. V. Mityushev and P.M. Adler, Darcy flow arround a two dimensional lense. Journal Phys. A: Math. Gen. 39 (2006) 3545–3560. [CrossRef] [Google Scholar]
  24. V. Reichenberger, H. Jakobs, P. Bastian and R. Helmig, A mixed-dimensional finite volume method for two-phase flow in fractured porous media. Adv. Water Resour. 29 (2006) 1020–1036. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you