Free Access
Volume 43, Number 3, May-June 2009
Page(s) 563 - 589
Published online 30 April 2009
  1. J.L. Boldrini and G. Planas, Weak solutions of a phase-field model for phase change of an alloy with thermal properties. Math. Methods Appl. Sci. 25 (2002) 1177–1193. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.L. Boldrini and C. Vaz, A semidiscretization scheme for a phase-field type model for solidification. Port. Math. (N.S.) 63 (2006) 261–292. [Google Scholar]
  3. S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathathematics 15. Springer-Verlag, Berlin (1994). [Google Scholar]
  4. E. Burman, D. Kessler and J. Rappaz, Convergence of the finite element method applied to an anisotropic phase-field model. Ann. Math. Blaise Pascal 11 (2004) 67–94. [MathSciNet] [Google Scholar]
  5. G. Caginalp and W. Xie, Phase-field and sharp-interface alloy models. Phys. Rev. E 48 (1993) 1897–1909. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Ern and J.L.Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer, New York (2004). [Google Scholar]
  7. X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541–567. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Guillén-González and J.V. Gutiérrez-Santacreu, Unconditional stability and convergence of a fully discrete scheme for 2D viscous fluids models with mass diffusion. Math. Comp. 77 (2008) 1495–1524 (electronic). [Google Scholar]
  9. O. Kavian, Introduction à la Théorie des Points Critiques, Mathématiques et Applications 13. Springer, Berlin (1993). [Google Scholar]
  10. D. Kessler and J.F. Scheid, A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal. 22 (2002) 281–305. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437–445. [Google Scholar]
  12. J.F. Scheid, Global solutions to a degenerate solutal phase field model for the solidification of a binary alloy. Nonlinear Anal. 5 (2004) 207–217. [CrossRef] [MathSciNet] [Google Scholar]
  13. J. Simon, Compact sets in the Space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–97. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you