Free Access
Volume 43, Number 3, May-June 2009
Page(s) 563 - 589
Published online 30 April 2009
  1. J.L. Boldrini and G. Planas, Weak solutions of a phase-field model for phase change of an alloy with thermal properties. Math. Methods Appl. Sci. 25 (2002) 1177–1193. [CrossRef] [MathSciNet]
  2. J.L. Boldrini and C. Vaz, A semidiscretization scheme for a phase-field type model for solidification. Port. Math. (N.S.) 63 (2006) 261–292.
  3. S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathathematics 15. Springer-Verlag, Berlin (1994).
  4. E. Burman, D. Kessler and J. Rappaz, Convergence of the finite element method applied to an anisotropic phase-field model. Ann. Math. Blaise Pascal 11 (2004) 67–94. [MathSciNet]
  5. G. Caginalp and W. Xie, Phase-field and sharp-interface alloy models. Phys. Rev. E 48 (1993) 1897–1909. [CrossRef] [MathSciNet]
  6. A. Ern and J.L.Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer, New York (2004).
  7. X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541–567. [CrossRef] [MathSciNet]
  8. F. Guillén-González and J.V. Gutiérrez-Santacreu, Unconditional stability and convergence of a fully discrete scheme for 2D viscous fluids models with mass diffusion. Math. Comp. 77 (2008) 1495–1524 (electronic). [CrossRef] [MathSciNet]
  9. O. Kavian, Introduction à la Théorie des Points Critiques, Mathématiques et Applications 13. Springer, Berlin (1993).
  10. D. Kessler and J.F. Scheid, A priori error estimates of a finite-element method for an isothermal phase-field model related to the solidification process of a binary alloy. IMA J. Numer. Anal. 22 (2002) 281–305. [CrossRef] [MathSciNet]
  11. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comp. 38 (1982) 437–445. [CrossRef] [MathSciNet]
  12. J.F. Scheid, Global solutions to a degenerate solutal phase field model for the solidification of a binary alloy. Nonlinear Anal. 5 (2004) 207–217. [CrossRef] [MathSciNet]
  13. J. Simon, Compact sets in the Space Lp(0,T;B). Ann. Mat. Pura Appl. 146 (1987) 65–97.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you