Free Access
Issue
ESAIM: M2AN
Volume 43, Number 3, May-June 2009
Page(s) 523 - 561
DOI https://doi.org/10.1051/m2an/2009008
Published online 08 April 2009
  1. D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations, Volume VII, R. Vichnevetsky and R.S. Steplemen Eds. (1992). [Google Scholar]
  2. M. Bajaj, M. Pasquali and J.R. Prakash, Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder. J. Rheol. 52 (2008) 197–223. [CrossRef] [Google Scholar]
  3. J. Baranger and A. Machmoum, Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method. Comput. Methods Appl. Mech. Engrg. 148 (1997) 39–52. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett and S. Boyaval, Convergence of a finite element approximation to a regularized Oldroyd-B model (in preparation). [Google Scholar]
  5. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939–983. [CrossRef] [MathSciNet] [Google Scholar]
  6. A.N. Beris and B.J. Edwards, Thermodynamics of flowing systems with internal microstructure. Oxford University Press (1994). [Google Scholar]
  7. J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three fields Stokes problem arising from viscoelastic flows. Comp. Meth. Appl. Mech. Eng. 190 (2001) 3893–3914. [CrossRef] [MathSciNet] [Google Scholar]
  8. F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solution of Elliptic System, W. Hackbusch Ed. (1984) 11–19. [Google Scholar]
  9. F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Brezzi, J. Douglas, Jr. and L.D. Marini, Recent results on mixed finite element methods for second order elliptic problems, in Vistas in Applied Mathematics: Numerical Analysis, Atmospheric Sciences, Immunology, A.V. Balakrishnan, A.A. Dorodnitsyn and J.L. Lions Eds. (1986) 25–43. [Google Scholar]
  11. R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comp. Meth. Appl. Mech. Engrg. 156 (1998) 185–210. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 3 (1973) 33–75. [Google Scholar]
  13. A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer Verlag, New-York (2004). [Google Scholar]
  14. R. Fattal and R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2004) 281–285. [CrossRef] [Google Scholar]
  15. R. Fattal and R. Kupferman, Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (2005) 23–37. [CrossRef] [EDP Sciences] [Google Scholar]
  16. A. Fattal, O.H. Hald, G. Katriel and R. Kupferman, Global stability of equilibrium manifolds, and “peaking" behavior in quadratic differential systems related to viscoelastic models. J. Non-Newtonian Fluid Mech. 144 (2007) 30–41. [CrossRef] [Google Scholar]
  17. E. Fernández-Cara, F. Guillén and R.R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of Numerical Analysis, Vol. 8, P.G. Ciarlet et al. Eds., Elsevier (2002) 543–661. [Google Scholar]
  18. J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: M2AN 33 (1999) 1293–1316. [CrossRef] [EDP Sciences] [Google Scholar]
  19. C. Guillopé and J.C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlin. Anal. TMA 15 (1990) 849–869. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Hu and T. Lelièvre, New entropy estimates for the Oldroyd-B model, and related models. Commun. Math. Sci. 5 (2007) 906–916. [Google Scholar]
  21. T.J.R. Hughes and L.P. Franca, A new finite element formulation for CFD: VII the Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. App. Mech. Eng. 65 (1987) 85–96. [CrossRef] [MathSciNet] [Google Scholar]
  22. M.A. Hulsen, A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newtonian Fluid Mech. 38 (1990) 93–100. [CrossRef] [Google Scholar]
  23. M.A. Hulsen, R. Fattal and R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (2005) 27–39. [CrossRef] [Google Scholar]
  24. B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181 (2006) 97–148. [CrossRef] [MathSciNet] [Google Scholar]
  25. N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1–10. [CrossRef] [Google Scholar]
  26. R.A. Keiller, Numerical instability of time-dependent flows. J. Non-Newtonian Fluid Mech. 43 (1992) 229–246. [CrossRef] [Google Scholar]
  27. R. Keunings, Simulation of viscoelastic fluid flow, in Fundamentals of Computer Modeling for Polymer Processing, C. Tucker Ed., Hanse (1989) 402–470. [Google Scholar]
  28. R. Keunings, A survey of computational rheology, in Proc. 13th Int. Congr. on Rheology, D.M. Binding et al Eds., British Society of Rheology (2000) 7–14. [Google Scholar]
  29. R. Kupferman, C. Mangoubi and E. Titi, A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Comm. Math. Sci. 6 (2008) 235–256. [Google Scholar]
  30. Y. Kwon, Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations. Korea-Australia Rheology Journal 16 (2004) 183–191. [Google Scholar]
  31. Y. Kwon and A.V. Leonov, Stability constraints in the formulation of viscoelastic constitutive equations. J. Non-Newtonian Fluid Mech. 58 (1995) 25–46. [CrossRef] [Google Scholar]
  32. Y. Lee and J. Xu, New formulations positivity preserving discretizations and stability analysis for non-Newtonian flow models. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1180–1206. [CrossRef] [MathSciNet] [Google Scholar]
  33. A.I. Leonov, Analysis of simple constitutive equations for viscoelastic liquids. J. Non-Newton. Fluid Mech. 42 (1992) 323–350. [CrossRef] [Google Scholar]
  34. F.-H. Lin, C. Liu and P.W. Zhang, On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math. 58 (2005) 1437–1471. [CrossRef] [MathSciNet] [Google Scholar]
  35. P.L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math., Ser. B 21 (2000) 131–146. [Google Scholar]
  36. A. Lozinski and R.G. Owens, An energy estimate for the Oldroyd-B model: theory and applications. J. Non-Newtonian Fluid Mech. 112 (2003) 161–176. [CrossRef] [Google Scholar]
  37. R. Mneimne and F. Testard, Introduction à la théorie des groupes de Lie classiques. Hermann (1986). [Google Scholar]
  38. K.W. Morton, A. Priestley and E. Süli, Convergence analysis of the Lagrange-Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625–653. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  39. H.C. Öttinger, Beyond Equilibrium Thermodynamics. Wiley (2005). [Google Scholar]
  40. O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 3 (1982) 309–332. [CrossRef] [Google Scholar]
  41. J.M. Rallison and E.J. Hinch, Do we understand the physics in the constitutive equation? J. Non-Newtonian Fluid Mech. 29 (1988) 37–55. [CrossRef] [Google Scholar]
  42. D. Sandri, Non integrable extra stress tensor solution for a flow in a bounded domain of an Oldroyd fluid. Acta Mech. 135 (1999) 95–99. [CrossRef] [MathSciNet] [Google Scholar]
  43. L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111–143. [MathSciNet] [Google Scholar]
  44. E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53 (1988) 459–483. [CrossRef] [MathSciNet] [Google Scholar]
  45. R. Temam, Sur l'approximation des équations de Navier-Stokes. C. R. Acad. Sci. Paris, Sér. A 262 (1966) 219–221. [Google Scholar]
  46. B. Thomases and M. Shelley, Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19 (2007) 103103. [CrossRef] [Google Scholar]
  47. P. Wapperom and M.A. Hulsen, Thermodynamics of viscoelastic fluids: the temperature equation. J. Rheol. 42 (1998) 999–1019. [CrossRef] [Google Scholar]
  48. P. Wapperom, R. Keunings and V. Legat, The backward-tracking lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91 (2000) 273–295. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you