Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 631 - 644
Published online 08 July 2009
  1. S. Blanes, F. Casas and A. Murua, On the numerical integration of ordinary differential equations by processed methods. SIAM J. Numer. Anal. 42 (2004) 531–552. [CrossRef] [MathSciNet] [Google Scholar]
  2. J.C. Butcher, The effective order of Runge-Kutta methods, in Proceedings of Conference on the Numerical Solution of Differential Equations, J.L. Morris Ed., Lect. Notes Math. 109 (1969) 133–139. [Google Scholar]
  3. P. Chartier, E. Faou and A. Murua, An algebraic approach to invariant preserving integrators: the case of quadratic and Hamiltonian invariants. Numer. Math. 103 (2006) 575–590. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Cottrell and P.F. Tupper, Energy drift in molecular dynamics simulations. BIT 47 (2007) 507–523. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Faou, E. Hairer and T.-L. Pham, Energy conservation with non-symplectic methods: examples and counter-examples. BIT 44 (2004) 699–709. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Hairer and C. Lubich, Symmetric multistep methods over long times. Numer. Math. 97 (2004) 699–723. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31. Springer-Verlag, Berlin, 2nd Edition (2006). [Google Scholar]
  8. R.I. McLachlan and M. Perlmutter, Energy drift in reversible time integration. J. Phys. A 37 (2004) L593–L598. [CrossRef] [Google Scholar]
  9. I.P. Omelyan, Extrapolated gradientlike algorithms for molecular dynamics and celestial mechanics simulations. Phys. Rev. E 74 (2006) 036703. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Rowlands, A numerical algorithm for Hamiltonian systems. J. Comput. Phys. 97 (1991) 235–239. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.D. Skeel, G. Zhang and T. Schlick, A family of symplectic integrators: stability, accuracy, and molecular dynamics applications. SIAM J. Sci. Comput. 18 (1997) 203–222. [CrossRef] [MathSciNet] [Google Scholar]
  12. R.D. Skeel, What makes molecular dynamics work? SIAM J. Sci. Comput. 31 (2009) 1363–1378. [CrossRef] [PubMed] [Google Scholar]
  13. D. Stoffer, On reversible and canonical integration methods. Technical Report SAM-Report No. 88-05, ETH-Zürich, Switzerland (1988). [Google Scholar]
  14. M. Takahashi and M. Imada, Monte Carlo calculation of quantum systems. II. Higher order correction. J. Phys. Soc. Jpn. 53 (1984) 3765–3769. [CrossRef] [Google Scholar]
  15. P.F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems. SIAM J. Appl. Dyn. Syst. 4 (2005) 563–587. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Wisdom, M. Holman and J. Touma, Symplectic correctors, in Integration Algorithms and Classical Mechanics, J.E. Marsden, G.W. Patrick and W.F. Shadwick Eds., Amer. Math. Soc., Providence R.I. (1996) 217–244. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you