Free Access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 677 - 687
Published online 08 July 2009
  1. M.J. Ablowitz and J.F. Ladik, A nonlinear difference scheme and inverse scattering. Studies Appl. Math. 55 (1976) 213–229. [Google Scholar]
  2. H. Berland, B. Owren and B. Skaflestad, Solving the nonlinear Schrödinger equation using exponential integrators. Model. Ident. Control 27 (2006) 201–218. [CrossRef] [Google Scholar]
  3. C. Besse, A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42 (2004) 934–952 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Celledoni, D. Cohen and B. Owren, Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8 (2008) 303–317. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Durán and J.M. Sanz-Serna, The numerical integration of relative equilibrium solutions. The nonlinear Schrödinger equation. IMA J. Numer. Anal. 20 (2000) 235–261. [CrossRef] [MathSciNet] [Google Scholar]
  6. Z. Fei, V.M. Pérez-García and L. Vázquez, Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71 (1995) 165–177. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration, Structure-preserving algorithms for ordinary differential equations, Springer Series in Computational Mathematics 31. Second Edition, Springer-Verlag, Berlin (2006). [Google Scholar]
  8. A.L. Islas, D.A. Karpeev and C.M. Schober, Geometric integrators for the nonlinear Schrödinger equation. J. Comput. Phys. 173 (2001) 116–148. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Matsuo and D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations. J. Comput. Phys. 171 (2001) 425–447. [CrossRef] [MathSciNet] [Google Scholar]
  10. T.R. Taha and J. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55 (1984) 203–230. [CrossRef] [MathSciNet] [Google Scholar]
  11. J.A.C. Weideman and B.M. Herbst, Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23 (1986) 485–507. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you