Issue |
ESAIM: M2AN
Volume 47, Number 5, September-October 2013
|
|
---|---|---|
Page(s) | 1265 - 1286 | |
DOI | https://doi.org/10.1051/m2an/2013067 | |
Published online | 09 July 2013 |
Error analysis of high-order splitting methods for nonlinear evolutionary Schrödinger equations and application to the MCTDHF equations in electron dynamics
1 Institute for Analysis and Scientific Computing, Vienna University of Technology, Wiedner Hauptstrasse 8–10, 1040 Wien, Austria.
othmar@othmar-koch.org
2 Institut für Mathematik, Leopold–Franzens Universität Innsbruck, Technikerstrasse 13/VII, 6020 Innsbruck, Austria.
christof.neuhauser@uibk.ac.at
3 Institut für Mathematik und Rechneranwendung, Universität der Bundeswehr München, Werner–Heisenberg–Weg 39, 85577 Neubiberg, Germany.
mechthild.thalhammer@uibk.ac.at
Received: 10 August 2011
Revised: 14 February 2012
In this work, the error behaviour of high-order exponential operator splitting methods for the time integration of nonlinear evolutionary Schrödinger equations is investigated. The theoretical analysis utilises the framework of abstract evolution equations on Banach spaces and the formal calculus of Lie derivatives. The general approach is substantiated on the basis of a convergence result for exponential operator splitting methods of (nonstiff) order p applied to the multi-configuration time-dependent Hartree–Fock (MCTDHF) equations, which are associated with a model reduction for high-dimensional linear Schrödinger equations describing free electrons that interact by Coulomb force. Provided that the analytical solution of the MCTDHF equations constituting a system of coupled linear ordinary differential equations and low-dimensional nonlinear partial differential equations satisfies suitable regularity requirements, convergence of order p − 1 in the H1 Sobolev norm and convergence of order p in the L2 norm is proven. An analogous result follows for the cubic nonlinear Schrödinger equation, which is also illustrated by a numerical experiment.
Mathematics Subject Classification: 65L05 / 65M12 / 65J15
Key words: Nonlinear evolution equations / time-dependent nonlinear Schrödinger equations / multi-configuration time-dependent Hartree–Fock (MCTDHF) equations / high-order exponential operator splitting methods / local error expansion / convergence
© EDP Sciences, SMAI, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.