Free Access
Issue
ESAIM: M2AN
Volume 43, Number 5, September-October 2009
Page(s) 853 - 865
DOI https://doi.org/10.1051/m2an/2009005
Published online 08 April 2009
  1. R.A. Adams, Sobolev spaces, Pure and Applied Mathematics 65. Academic Press, New York-London (1975). [Google Scholar]
  2. A. Alonso, A. Dello Russo and A. Vampa, A posteriori error estimates in finite element acoustic analysis. J. Comput. Appl. Math. 117 (2000) 105–119. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Alonso, A. Dello Russo, C. Padra and R. Rodriguez, Accurate pressure post-process of a finite element method for elastoacoustics. Numer. Math. 98 (2004) 389–425. [MathSciNet] [Google Scholar]
  4. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7–32. [Google Scholar]
  5. I. Babǔska and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis 2, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991). [Google Scholar]
  6. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997) 131–154. [Google Scholar]
  7. D. Boffi, F. Kikuci and J. Schöberl, Edge element computation of Maxwell's eigenvalues on general quadrilateral meshes. Math. Models Methods Appl. Sci. 16 (2006) 265–273. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.H. Brandts, Superconvergence and a posteriori error estimation for triangular mixed finite elements. Numer. Math. 68 (1994) 311–324. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). [Google Scholar]
  10. P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its application 4. North Holland, Amsterdam (1978). [Google Scholar]
  11. R. Durán, L. Gastaldi and C. Padra, A posteriori error estimations for mixed approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165–1178. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ist. lombardo Accd. Sci. Lett. Rend. A. 138 (2004) 17–34. [Google Scholar]
  13. F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interactions, Computational Fluid and Solid Mechanics. Elsevier, Amsterdam (2005). [Google Scholar]
  14. F. Gardini, A posteriori error estimates for eigenvalue problems in mixed form. Ph.D. Thesis, Università degli Studi di Pavia, Pavia, Italy (2005). [Google Scholar]
  15. P. Grisvard, Elliptic problem in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman, Boston (1985). [Google Scholar]
  16. J-.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Travaux et Recherches Matheḿatiques 17. Dunod, Paris (1968). [Google Scholar]
  17. L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method. SIAM J. Numer. Anal. 22 (1985) 493–496. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you