Free Access
Volume 43, Number 5, September-October 2009
Page(s) 867 - 888
Published online 30 April 2009
  1. M. Ainsworth and I. Babuška, Reliable and robust a posteriori error estimating for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331–353. [CrossRef] [MathSciNet] [Google Scholar]
  2. R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777–787. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen 22 (2003) 751–756. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). [Google Scholar]
  5. C. Carstensen and S.A. Funken, Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Math. 8 (2000) 153–175. [MathSciNet] [Google Scholar]
  6. I. Cheddadi, R. Fučík, M.I. Prieto and M. Vohralík, Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization. ESAIM: Proc. 24 (2008) 77–96. [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. Ern, A.F. Stephansen and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. HAL Preprint 00193540, submitted for publication (2008). [Google Scholar]
  8. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
  9. S. Grosman, An equilibrated residual method with a computable error approximation for a singularly perturbed reaction–diffusion problem on anisotropic finite element meshes. ESAIM: M2AN 40 (2006) 239–267. [CrossRef] [EDP Sciences] [Google Scholar]
  10. F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFem++. Technical report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France, (2007). [Google Scholar]
  11. S. Korotov, Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions. Appl. Math. 52 (2007) 235–249. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Luce and B.I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42 (2004) 1394–1414. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Mer, Variational analysis of a mixed finite element/finite volume scheme on general triangulations. Technical report, INRIA 2213, France (1994). [Google Scholar]
  15. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286–292. [Google Scholar]
  16. W. Prager and J.L. Synge, Approximations in elasticity based on the concept of function space. Quart. Appl. Math. 5 (1947) 241–269. [MathSciNet] [Google Scholar]
  17. S. Repin and S. Sauter, Functional a posteriori estimates for the reaction–diffusion problem. C. R. Math. Acad. Sci. Paris 343 (2006) 349–354. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991) 523–639. [Google Scholar]
  19. A.F. Stephansen, Méthodes de Galerkine discontinues et analyse d'erreur a posteriori pour les problèmes de diffusion hétérogène. Ph.D. Thesis, École nationale des ponts et chaussées, France (2007). [Google Scholar]
  20. T. Vejchodský, Guaranteed and locally computable a posteriori error estimate. IMA J. Numer. Anal. 26 (2006) 525–540. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math. 78 (1998) 479–493. [CrossRef] [MathSciNet] [Google Scholar]
  22. R. Verfürth, A note on constant-free a posteriori error estimates. Technical report, Ruhr-Universität Bochum, Germany (2008). [Google Scholar]
  23. M. Vohralík, On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H1. Numer. Funct. Anal. Optim. 26 (2005) 925–952. [Google Scholar]
  24. M. Vohralík, A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal. 45 (2007) 1570–1599. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. Preprint R08009, Laboratoire Jacques-Louis Lions, submitted for publication (2008). [Google Scholar]
  26. M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math. 111 (2008) 121–158. [CrossRef] [MathSciNet] [Google Scholar]
  27. M. Vohralík, Two types of guaranteed (and robust) a posteriori estimates for finite volume methods, in Finite Volumes for Complex Applications V, ISTE and John Wiley & Sons, London, UK and Hoboken, USA (2008) 649–656. [Google Scholar]
  28. O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337–357. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you