Free Access
Issue
ESAIM: M2AN
Volume 43, Number 6, November-December 2009
Page(s) 1027 - 1044
DOI https://doi.org/10.1051/m2an/2009016
Published online 12 June 2009
  1. G. Alberti and A. De Simone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 79–97. [CrossRef] [MathSciNet]
  2. G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. In preparation (2009).
  3. G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with line-tension effect. Arch. Rat. Mech. Anal. 144 (1998) 1–46. [CrossRef] [MathSciNet]
  4. S. Baldo and G. Bellettini, Γ-convergence and numerical analysis: an application to the minimal partition problem. Ricerche di Matematica 1 (1991) 33–64.
  5. W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comp. 25 (2004) 1674. [CrossRef]
  6. A. Braides, Γ-convergence for beginners. Oxford University Press (2002).
  7. M. Callies and D. Quéré, On water repellency. Soft Matter 1 (2005) 55–61. [CrossRef]
  8. G. Dal Maso, An introduction to Γ-convergence. Birkhaüser (1993).
  9. P.-G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena. Springer (2004).
  10. A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis. Networks and Heterogeneous Media 2 (2007) 211–225 [CrossRef] [MathSciNet]
  11. R. Finn, Equilibrium Capillary Surfaces. Springer (1986).
  12. A. Lafuma and D. Quéré, Superhydrophobic states. Nature Materials 2 (2003) 457–460. [CrossRef] [PubMed]
  13. L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987) 497.
  14. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. It. B 14 (1977) 285–299.
  15. N.A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19 (2003) 1249–1253. [CrossRef]
  16. S.J. Polak, An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl. 14 (1974) 197–201. [CrossRef] [MathSciNet]
  17. P. Seppecher, Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci. 34 (1996) 977–992. [CrossRef]
  18. J.C. Strikwerda, Finite Difference Schemes and PDE. SIAM (2004).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you