Free Access
Volume 43, Number 6, November-December 2009
Page(s) 1027 - 1044
Published online 12 June 2009
  1. G. Alberti and A. De Simone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 79–97. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. In preparation (2009). [Google Scholar]
  3. G. Alberti, G. Bouchitté and P. Seppecher, Phase transition with line-tension effect. Arch. Rat. Mech. Anal. 144 (1998) 1–46. [Google Scholar]
  4. S. Baldo and G. Bellettini, Γ-convergence and numerical analysis: an application to the minimal partition problem. Ricerche di Matematica 1 (1991) 33–64. [Google Scholar]
  5. W. Bao and Q. Du, Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comp. 25 (2004) 1674. [Google Scholar]
  6. A. Braides, Γ-convergence for beginners. Oxford University Press (2002). [Google Scholar]
  7. M. Callies and D. Quéré, On water repellency. Soft Matter 1 (2005) 55–61. [CrossRef] [Google Scholar]
  8. G. Dal Maso, An introduction to Γ-convergence. Birkhaüser (1993). [Google Scholar]
  9. P.-G. De Gennes, F. Brochard-Wyart and D. Quéré, Capillarity and Wetting Phenomena. Springer (2004). [Google Scholar]
  10. A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis. Networks and Heterogeneous Media 2 (2007) 211–225 [Google Scholar]
  11. R. Finn, Equilibrium Capillary Surfaces. Springer (1986). [Google Scholar]
  12. A. Lafuma and D. Quéré, Superhydrophobic states. Nature Materials 2 (2003) 457–460. [Google Scholar]
  13. L. Modica, Gradient theory of phase transitions with boundary contact energy. Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1987) 497. [Google Scholar]
  14. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. It. B 14 (1977) 285–299. [Google Scholar]
  15. N.A. Patankar, On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 19 (2003) 1249–1253. [CrossRef] [Google Scholar]
  16. S.J. Polak, An increased accuracy scheme for diffusion equations in cylindrical coordinates. J. Inst. Math. Appl. 14 (1974) 197–201. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Seppecher, Moving contact lines in the Cahn-Hilliard theory. Int. J. Engng. Sci. 34 (1996) 977–992. [Google Scholar]
  18. J.C. Strikwerda, Finite Difference Schemes and PDE. SIAM (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you