Free Access
Issue
ESAIM: M2AN
Volume 43, Number 6, November-December 2009
Page(s) 1203 - 1219
DOI https://doi.org/10.1051/m2an/2009036
Published online 21 August 2009
  1. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Becker and S. Mao, An optimally convergent adaptive mixed finite element method. Numer. Math. 111 (2008) 35–54. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Becker and D. Trujillo, Convergence of an adaptive finite element method on quadrilateral meshes. Research Report RR-6740, INRIA, France (2008). [Google Scholar]
  4. R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods. Computing 55 (1995) 271–288. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Becker, S. Mao and Z.-C. Shi, A convergent adaptive finite element method with optimal complexity. Electron. Trans. Numer. Anal. 30 (2008) 291–304. [MathSciNet] [Google Scholar]
  6. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.H. Bramble and J.E. Pasciak, New estimates for multilevel algorithms including the v-cycle. Math. Comp. 60 (1995) 447–471. [Google Scholar]
  8. C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: M2AN 33 (1999) 1187–1202. [CrossRef] [EDP Sciences] [Google Scholar]
  9. C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999) 1571–1587. [CrossRef] [MathSciNet] [Google Scholar]
  10. J.M. Cascon, Ch. Kreuzer, R.N. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer. Anal. 46 (2008) 2524–2550. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  11. P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications 4. Amsterdam, New York, Oxford: North-Holland Publishing Company (1978). [Google Scholar]
  12. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comput. 70 (2001) 27–75. [Google Scholar]
  13. R. DeVore, Nonlinear approximation. Acta Numer. 7 (1998) 51–150. [CrossRef] [Google Scholar]
  14. W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  15. W. Dörfler and R.H. Nochetto, Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. [CrossRef] [MathSciNet] [Google Scholar]
  16. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numer. 4 (1995) 105–158. [CrossRef] [Google Scholar]
  17. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Morin, K.G. Siebert and A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18 (2008) 707–737. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley/Teubner, New York-Stuttgart (1996). [Google Scholar]
  21. H. Wu and Z. Chen, Uniform convergence of multigrid v-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A 49 (2006) 1405–1429. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you