Free Access
Issue
ESAIM: M2AN
Volume 43, Number 6, November-December 2009
Page(s) 1203 - 1219
DOI https://doi.org/10.1051/m2an/2009036
Published online 21 August 2009
  1. I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15 (1978) 736–754. [CrossRef] [MathSciNet]
  2. R. Becker and S. Mao, An optimally convergent adaptive mixed finite element method. Numer. Math. 111 (2008) 35–54. [CrossRef] [MathSciNet]
  3. R. Becker and D. Trujillo, Convergence of an adaptive finite element method on quadrilateral meshes. Research Report RR-6740, INRIA, France (2008).
  4. R. Becker, C. Johnson and R. Rannacher, Adaptive error control for multigrid finite element methods. Computing 55 (1995) 271–288. [CrossRef] [MathSciNet]
  5. R. Becker, S. Mao and Z.-C. Shi, A convergent adaptive finite element method with optimal complexity. Electron. Trans. Numer. Anal. 30 (2008) 291–304. [MathSciNet]
  6. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet]
  7. J.H. Bramble and J.E. Pasciak, New estimates for multilevel algorithms including the v-cycle. Math. Comp. 60 (1995) 447–471.
  8. C. Carstensen, Quasi-interpolation and a posteriori error analysis in finite element methods. ESAIM: M2AN 33 (1999) 1187–1202. [CrossRef] [EDP Sciences]
  9. C. Carstensen and R. Verfürth, Edge residuals dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36 (1999) 1571–1587. [CrossRef] [MathSciNet]
  10. J.M. Cascon, Ch. Kreuzer, R.N. Nochetto and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer. Anal. 46 (2008) 2524–2550. [CrossRef] [MathSciNet] [PubMed]
  11. P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications 4. Amsterdam, New York, Oxford: North-Holland Publishing Company (1978).
  12. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations: Convergence rates. Math. Comput. 70 (2001) 27–75.
  13. R. DeVore, Nonlinear approximation. Acta Numer. 7 (1998) 51–150. [CrossRef]
  14. W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet]
  15. W. Dörfler and R.H. Nochetto, Small data oscillation implies the saturation assumption. Numer. Math. 91 (2002) 1–12. [CrossRef] [MathSciNet]
  16. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Numer. 4 (1995) 105–158. [CrossRef]
  17. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488. [CrossRef] [MathSciNet]
  18. P. Morin, K.G. Siebert and A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. Sci. 18 (2008) 707–737. [CrossRef] [MathSciNet] [PubMed]
  19. R. Stevenson, Optimality of a standard adaptive finite element method. Found. Comput. Math. 7 (2007) 245–269. [CrossRef] [MathSciNet]
  20. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. John Wiley/Teubner, New York-Stuttgart (1996).
  21. H. Wu and Z. Chen, Uniform convergence of multigrid v-cycle on adaptively refined finite element meshes for second order elliptic problems. Sci. China Ser. A 49 (2006) 1405–1429. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you