Free Access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 1 - 31
DOI https://doi.org/10.1051/m2an/2009040
Published online 09 October 2009
  1. F. Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case. SIAM J. Numer. Anal. 34 (1997) 1708–1726. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alouges, A new finite element scheme for Landau-Lifchitz equations. Discrete Contin. Dyn. Syst. Ser. S 1 (2008) 187–196. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett, S. Bartels, X. Feng and A. Prohl, A convergent and constraint-preserving finite element method for the Formula -harmonic flow into spheres. SIAM J. Numer. Anal. 45 (2007) 905–927. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.W. Barrett, H. Garcke and R. Nürnberg, On the parametric finite element approximation of evolving hypersurfaces in Formula . J. Comput. Phys. 227 (2008) 4281–4307. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal. 43 (2005) 220–238 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  6. T. Baumgart, S.T. Hess and W.W. Webb, Imaging co-existing domains in biomembrane models coupling curvature and tension. Nature 425 (2003) 832–824. [CrossRef] [PubMed] [Google Scholar]
  7. T. Biben and C. Misbah, An advected-field model for deformable entities under flow. Eur. Phys. J. B 29 (2002) 311–316. [CrossRef] [EDP Sciences] [Google Scholar]
  8. P. Biscari and E.M. Terentjev, Nematic membranes: Shape instabilities of closed achiral vesicles. Phys. Rev. E 73 (2006) 051706. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York, USA (1991). [Google Scholar]
  10. P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theort. Biol. 26 (1970) 61–81. [CrossRef] [PubMed] [Google Scholar]
  11. Y.M. Chen, The weak solutions to the evolution problems of harmonic maps. Math. Z. 201 (1989) 69–74. [CrossRef] [MathSciNet] [Google Scholar]
  12. C.H.A. Cheng, D. Coutand and S. Shkoller, Navier-Stokes equations interacting with a nonlinear elastic biofluid shell. SIAM J. Math. Anal. 39 (2007) 742–800 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  13. P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, USA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. [Google Scholar]
  14. K. Deckelnick, G. Dziuk and C.M. Elliott, Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14 (2005) 139–232. [CrossRef] [MathSciNet] [Google Scholar]
  15. Q. Du, C. Liu and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198 (2004) 450–468. [CrossRef] [MathSciNet] [Google Scholar]
  16. Q. Du, C. Liu and X. Wang, Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys. 212 (2006) 757–777. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Dziuk, Computational parametric Willmore flow. Numer. Math. 111 (2008) 55–80. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14 (1974) 923–931. [CrossRef] [PubMed] [Google Scholar]
  19. J.B. Fournier and P. Galatoa, Sponges, tubules and modulated phases of para-antinematic membranes. J. Phys. II 7 (1997) 1509–1520. [CrossRef] [Google Scholar]
  20. A. Freire, S. Müller and M. Struwe, Weak compactness of wave maps and harmonic maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 725–754. [CrossRef] [MathSciNet] [Google Scholar]
  21. M. Giaquinta and S. Hildebrandt, Calculus of variations I: The Lagrangian formalism, Grundlehren der Mathematischen Wissenschaften 310, [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Germany (1996). [Google Scholar]
  22. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985). [Google Scholar]
  23. C. Grossmann and H.-G. Roos, Numerical treatment of partial differential equations. Universitext, Springer, Berlin, Germany (2007). Translated and revised from the 3rd (2005) German edition by Martin Stynes. [Google Scholar]
  24. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28 (1973) 693–703. [PubMed] [Google Scholar]
  25. W. Helfrich and J. Prost, Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys. Rev. A 38 (1988) 3065–3068. [CrossRef] [PubMed] [Google Scholar]
  26. J.T. Jenkins, The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math. 32 (1977) 755–764. [CrossRef] [MathSciNet] [Google Scholar]
  27. M.A. Johnson and R.S. Decca, Dynamics of topological defects in the Formula phase of 1,2-dipalmitoyl phosphatidylcholine bilayers. Opt. Commun. 281 (2008) 1870–1875. [CrossRef] [Google Scholar]
  28. O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and quasilinear elliptic equations. Academic Press, New York, USA (1968). Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. [Google Scholar]
  29. T. C. Lubensky and F.C. MacKintosh, Theory of “ripple” phases of bilayers. Phys. Rev. Lett. 71 (1993) 1565–1568. [CrossRef] [PubMed] [Google Scholar]
  30. F.C. MacKintosh and T.C. Lubensky, Orientational order, topology, and vesicle shapes. Phys. Rev. Lett. 67 (1991) 1169–1172. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  31. S.J. Marrink, J. Risselada and A.E. Mark, Simulation of gel phase formation and melting in lipid bilayers using a coarse grained model. Chem. Phys. Lipids 135 (2005) 223–244. [CrossRef] [PubMed] [Google Scholar]
  32. S.T.-N.J.F. Nagle, Structure of lipid bilayers. Biochim. Biophys. Acta 1469 (2000) 159–195. [CrossRef] [PubMed] [Google Scholar]
  33. P. Nelson and T. Powers, Rigid chiral membranes. Phys. Rev. Lett. 69 (1992) 3409–3412. [CrossRef] [PubMed] [Google Scholar]
  34. R. Oda, I. Huc, M. Schmutz and S.J. Candau, Tuning bilayer twist using chiral counterions. Nature 399 (1999) 566–569. [CrossRef] [PubMed] [Google Scholar]
  35. M.S. Pauletti, Parametric AFEM for geometric evolution equations coupled fluid-membrane interaction. Ph.D. Thesis, University of Maryland, USA (2008). [Google Scholar]
  36. R.E. Rusu, An algorithm for the elastic flow of surfaces. Interfaces Free Bound. 7 (2005) 229–239. [CrossRef] [MathSciNet] [Google Scholar]
  37. U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13–137. [CrossRef] [Google Scholar]
  38. J.V. Selinger and J.M. Schnur, Theory of chiral lipid tubules. Phys. Rev. Lett. 71 (1993) 4091–4094. [CrossRef] [PubMed] [Google Scholar]
  39. D. Steigmann, Fluid films with curvature elasticity. Arch. Ration. Mech. Anal. 150 (1999) 127–152. [CrossRef] [MathSciNet] [Google Scholar]
  40. M. Struwe, Geometric evolution problems, in Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), IAS/Park City Math. Ser. 2, Amer. Math. Soc., Providence, USA (1996) 257–339. [Google Scholar]
  41. N. Uchida, Dynamics of orientational ordering in fluid membranes. Phys. Rev. E 66 (2002) 040902. [CrossRef] [Google Scholar]
  42. E.G. Virga, Variational theories for liquid crystals, Appl. Math. Math. Comput. 8. Chapman & Hall, London, UK (1994). [Google Scholar]
  43. T.J. Willmore, Riemannian geometry, Oxford Science Publications. The Clarendon Press Oxford University Press, New York, USA (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you