Free Access
Issue |
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
|
|
---|---|---|
Page(s) | 33 - 73 | |
DOI | https://doi.org/10.1051/m2an/2009039 | |
Published online | 09 October 2009 |
- Y. Achdou and O. Pironneau, A numerical procedure for calibration of volatility with American options. Appl. Math. Finance 12 (2005) 201–241. [CrossRef] [Google Scholar]
- Y. Achdou and N. Tchou, Variational analysis for the Black and Scholes equation with stochastic volatility. ESAIM: M2AN 36 (2002) 373–395. [CrossRef] [EDP Sciences] [Google Scholar]
- O.E. Barndorff-Nielsen and N. Shephard, Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. Roy. Stat. Soc. 63 (2001) 167–241. [Google Scholar]
- J. Bertoin, Lévy processes. Cambridge University Press, Cambridge, UK (1996). [Google Scholar]
- G. Beylkin, R. Coifman and V. Rokhlin, The fast wavelet transform and numerical algorithms. Comm. Pure Appl. Math. 44 (1991) 141–183. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Bramble, A. Cohen and W. Dahmen, Multiscale problems and methods in numerical simulations, Lecture Notes in Mathematics 1825. Springer-Verlag, Berlin, Germany (2003). [Google Scholar]
- H.-J. Bungartz and M. Griebel, A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives. J. Complexity 15 (1999) 167–199. [CrossRef] [MathSciNet] [Google Scholar]
- A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45 (1992) 485–560. [Google Scholar]
- A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp. 70 (2001) 27–75 (electronic). [Google Scholar]
- A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2 (2002) 203–245. [CrossRef] [MathSciNet] [Google Scholar]
- R. Cont and P. Tankov, Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, USA (2004). [Google Scholar]
- R. Cont and E. Voltchkova, A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM J. Numer. Anal. 43 (2005) 1596–1626. [CrossRef] [MathSciNet] [Google Scholar]
- W. Dahmen and R. Schneider, Wavelets with complementary boundary conditions – function spaces on the cube. Results Math. 34 (1998) 255–293. [MathSciNet] [Google Scholar]
- W. Dahmen, S. Prössdorf and R. Schneider, Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution. Adv. Comput. Math. 1 (1993) 259–335. [CrossRef] [MathSciNet] [Google Scholar]
- W. Dahmen, S. Prössdorf and R. Schneider, Multiscale methods for pseudo-differential equations on smooth closed manifolds, in Wavelets: theory, algorithms, and applications (Taormina, 1993), Wavelet Anal. Appl. 5, Academic Press, San Diego, USA (1994) 385–424. [Google Scholar]
- W. Dahmen, A. Kunoth and K. Urban, Biorthogonal spline wavelets on the interval – stability and moment conditions. Appl. Comput. Harmon. Anal. 6 (1999) 132–196. [Google Scholar]
- W. Dahmen, H. Harbrecht and R. Schneider, Compression techniques for boundary integral equations – asymptotically optimal complexity estimates. SIAM J. Numer. Anal. 43 (2006) 2251–2271 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- F. Delbaen and W. Schachermayer, A general version of the fundamental theorem of asset pricing. Math. Ann. 300 (1994) 463–520. [Google Scholar]
- F. Delbaen and W. Schachermayer, The variance-optimal martingale measure for continuous processes. Bernoulli 2 (1996) 81–105. [CrossRef] [MathSciNet] [Google Scholar]
- F. Delbaen, P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer and C. Stricker, Exponential hedging and entropic penalties. Math. Finance 12 (2002) 99–123. [Google Scholar]
- M. Demuth and J. van Casteren, Stochastic Spectral Theory for Selfadjoint Feller Operators. Birkhäuser Verlag, Basel (2000). [Google Scholar]
- R. DeVore, Nonlinear approximation, in Acta numerica (1998), Acta Numer. 7, Cambridge Univ. Press, Cambridge, UK (1998) 51–150. [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and practice of Finite Elements. Springer Verlag, New York, USA (2004). [Google Scholar]
- W. Farkas, N. Reich and C. Schwab, Anisotropic stable Lévy copula processes – analytical and numerical aspects. Math. Models Methods Appl. Sci. 17 (2007) 1405–1443. [Google Scholar]
- T. Gantumur and R. Stevenson, Computation of differential operators in wavelet coordinates. Math. Comp. 75 (2006) 697–709 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comp. 76 (2007) 615–629 (electronic). [Google Scholar]
- M. Griebel and S. Knapek, Optimized general sparse grid approximation spaces for operator equations. Math. Comp. (to appear). [Google Scholar]
- M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations. Numer. Math. 83 (1999) 279–312. [CrossRef] [MathSciNet] [Google Scholar]
- H. Harbrecht and R. Schneider, Biorthogonal wavelet bases for the boundary element method. Math. Nachr. 269/270 (2004) 167–188. [Google Scholar]
- H. Harbrecht and R. Schneider, Wavelet Galerkin schemes for boundary integral equations – implementation and quadrature. SIAM J. Sci. Comput. 27 (2006) 1347–1370 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- N. Hilber, A.-M. Matache and C. Schwab, Sparse wavelet methods for option pricing under stochastic volatility. J. Comput. Finance 8 (2005) 1–42. [Google Scholar]
- N. Hilber, N. Reich, C. Schwab and C. Winter, Numerical methods for Lévy processes. Finance Stoch. 13 (2009) 471–500. Special Issue on Computational Methods in Finance (Part II). [CrossRef] [MathSciNet] [Google Scholar]
- N. Hilber, N. Reich and C. Winter, Wavelet methods, in Encyclopedia of Quantitative Finance, R. Cont Ed., John Wiley & Sons Ltd., Chichester (to appear). [Google Scholar]
- W. Hoh, Pseudo Differential Operators generating Markov Processes. Habilitationsschrift, University of Bielefeld, Germany (1998). [Google Scholar]
- L. Hörmander, Linear partial differential operators, Grundlehren der Mathematischen Wissenschaften 116 [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Germany (1963). [Google Scholar]
- L. Hörmander, The analysis of linear partial differential operators. III: Pseudodifferential operators, Grundlehren der Mathematischen Wissenschaften 274 [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, Germany (1985). [Google Scholar]
- N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. 2: Generators and their potential theory. Imperial College Press, London, UK (2002). [Google Scholar]
- N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. 3: Markov processes and applications. Imperial College Press, London, UK (2005). [Google Scholar]
- S. Knapek and F. Koster, Integral operators on sparse grids. SIAM J. Numer. Anal. 39 (2001/2002) 1794–1809 (electronic). [Google Scholar]
- F. Liu, N. Reich and A. Zhou, Two-scale Finite Element Discretizations for Infinitesimal Generators of Jump Processes in Finance. Research report 2008-23 Seminar for Applied Mathematics, ETH Zürich, Switzerland (2008). [Google Scholar]
- A.-M. Matache, T. von Petersdorff and C. Schwab, Fast deterministic pricing of options on Lévy driven assets. ESAIM: M2AN 38 (2004) 37–71. [CrossRef] [EDP Sciences] [Google Scholar]
- A.-M. Matache, P.A. Nitsche and C. Schwab, Wavelet Galerkin pricing of American contracts on Lévy driven assets. Quant. Finance 5 (2005) 403–424. [CrossRef] [MathSciNet] [Google Scholar]
- H. Nguyen and R. Stevenson, Finite element wavelets on manifolds. IMA J. Numer. Math. 23 (2003) 149–173. [CrossRef] [Google Scholar]
- P. Oswald, On N-term approximation by Haar functions in Hs-norms, in Metric Function Theory and Related Topics in Analysis, S.M. Nikolskij, B.S. Kashin and A.D. Izaak Eds., AFC, Moscow, Russia (1999) 137–163. [Google Scholar]
- N. Reich, Multiscale analysis for jump processes in finance, in Numerical Mathematics and Advanced Applications, K. Kunisch, G. Of and O. Steinbach Eds., Springer Verlag, Berlin, Germany (2008) 415–422. [Google Scholar]
- N. Reich, Wavelet Compression of Anisotropic Integrodifferential Operators on Sparse Tensor Product Spaces. Ph.D. Thesis 17661, ETH Zürich, Switzerland (2008). Available at http://e-collection.ethbib.ethz.ch/view/eth:30174. [Google Scholar]
- N. Reich, Wavelet Compression of Integral Operators on Sparse Tensor Spaces – Construction, Consistency and Asymptotically Optimal Complexity. Research report 2008-24, Seminar for Applied Mathematics, ETH Zürich, Switzerland (2008). [Google Scholar]
- N. Reich, Anisotropic operator symbols arising from multivariate jump processes. Integr. Equ. Oper. Theory 63 (2009) 127–150. [CrossRef] [Google Scholar]
- N. Reich, C. Schwab and C. Winter, On Kolmogorov equations for anisotropic multivariate Lévy processes. Finance Stoch. (to appear). [Google Scholar]
- K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge, UK (1999). [Google Scholar]
- R. Schneider, Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur Lösung großer vollbesetzter Gleichungssysteme. B.G. Teubner, Stuttgart, Germany (1998). [Google Scholar]
- C. Schwab and R. Stevenson, Adaptive wavelet algorithms for elliptic PDE's on product domains. Math. Comp. 77 (2008) 71–92 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- R.E. Showalter, Monotone Operators in Banach Space and Nonliner Partial Differential Equations. American Mathematical Society, Rhode Island, USA (1997). [Google Scholar]
- E.M. Stein, Harmonic Analysis. Princeton University Press, Princeton, USA (1993). [Google Scholar]
- R. Stevenson, On the compressibility of operators in wavelet coordinates. SIAM J. Math. Anal. 35 (2004) 1110–1132 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- M.E. Taylor, Pseudodifferential operators. Princeton University Press, Princeton, USA (1981). [Google Scholar]
- H. Triebel, Interpolation theory, function spaces, differential operators. Second edition, Johann Ambrosius Barth Verlag, Heidelberg, Germany (1995). [Google Scholar]
- T. von Petersdorff and C. Schwab, Fully discrete multiscale Galerkin BEM, in Multiscale wavelet methods for PDEs, W. Dahmen, A. Kurdila and P. Oswald Eds., Academic Press, San Diego, USA (1997) 287–346. [Google Scholar]
- T. von Petersdorff and C. Schwab, Wavelet discretizations of parabolic integrodifferential equations. SIAM J. Numer. Anal. 41 (2003) 159–180 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN 38 (2004) 93–127. [CrossRef] [EDP Sciences] [Google Scholar]
- T. von Petersdorff, C. Schwab and R. Schneider, Multiwavelets for second-kind integral equations. SIAM J. Numer. Anal. 34 (1997) 2212–2227. [CrossRef] [MathSciNet] [Google Scholar]
- C. Winter, Wavelet Galerkin schemes for option pricing in multidimensional Lévy models. Ph.D. Thesis 18221, ETH Zürich, Switzerland (2009). Available at http://e-collection.ethbib.ethz.ch/view/eth:41555. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.