Free Access
Issue
ESAIM: M2AN
Volume 44, Number 2, March-April 2010
Page(s) 289 - 322
DOI https://doi.org/10.1051/m2an/2010003
Published online 27 January 2010
  1. E.J. Allen, S.J. Novosel and Z. Zhang, Finite element and difference approximation of some linear stochastic partial differential equations. Stoch. Stoch. Rep. 64 (1998) 117–142. [Google Scholar]
  2. I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Bin, Numerical method for a parabolic stochastic partial differential equation. Master Thesis 2004-03, Chalmers University of Technology, Göteborg, Sweden (2004). [Google Scholar]
  4. J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. [CrossRef] [MathSciNet] [Google Scholar]
  5. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, USA (1994). [Google Scholar]
  6. C. Cardon-Weber, Implicit approximation scheme for the Cahn-Hilliard stochastic equation. PMA 613, Laboratoire de Probabilités et Modèles Alétoires, CNRS U.M.R. 7599, Universtités Paris VI et VII, Paris, France (2000). [Google Scholar]
  7. C. Cardon-Weber, Cahn-Hilliard equation: existence of the solution and of its density. Bernoulli 7 (2001) 777–816. [CrossRef] [MathSciNet] [Google Scholar]
  8. P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, New York (1987). [Google Scholar]
  9. H. Cook, Browian motion in spinodal decomposition. Acta Metall. 18 (1970) 297–306. [CrossRef] [Google Scholar]
  10. G. Da Prato and A. Debussche, Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26 (1996) 241–263. [CrossRef] [MathSciNet] [Google Scholar]
  11. N. Dunford and J.T. Schwartz, Linear Operators. Part II. Spectral Theory. Self Adjoint Operators in Hilbert Space. Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, USA (1988). [Google Scholar]
  12. K.R. Elder, T.M. Rogers and R.C. Desai, Numerical study of the late stages of spinodal decomposition. Phys. Rev. B 37 (1987) 9638–9649. [Google Scholar]
  13. G.H. Golub and C.F. Van Loan, Matrix Computations. Second Edition, The John Hopkins University Press, Baltimore, USA (1989). [Google Scholar]
  14. W. Grecksch and P.E. Kloeden, Time-discretised Galerkin approximations of parabolic stochastic PDEs. Bull. Austral. Math. Soc. 54 (1996) 79–85. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Hausenblas, Numerical analysis of semilinear stochastic evolution equations in Banach spaces. J. Comput. Appl. Math. 147 (2002) 485–516. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Hausenblas, Approximation for semilinear stochastic evolution equations. Potential Anal. 18 (2003) 141–186. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Kallianpur and J. Xiong, Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes-Monograph Series 26. Institute of Mathematical Statistics, Hayward, USA (1995). [Google Scholar]
  18. L. Kielhorn and M. Muthukumar, Spinodal decomposition of symmetric diblock copolymer homopolymer blends at the Lifshitz point. J. Chem. Phys. 110 (1999) 4079–4089. [CrossRef] [Google Scholar]
  19. P.E. Kloeden and S. Shot, Linear-implicit strong schemes for Itô-Galerkin approximations of stochastic PDEs. J. Appl. Math. Stoch. Anal. 14 (2001) 47–53. [CrossRef] [Google Scholar]
  20. G.T. Kossioris and G.E. Zouraris, Fully-Discrete Finite Element Approximations for a Fourth-Order Linear Stochastic Parabolic Equation with Additive Space-Time White Noise. TRITA-NA 2008:2, School of Computer Science and Communication, KTH, Stockholm, Sweden (2008). [Google Scholar]
  21. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I. Springer-Verlag, Berlin-Heidelberg, Germany (1972). [Google Scholar]
  22. T. Müller-Gronbach and K. Ritter, Lower bounds and non-uniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7 (2007) 135–181. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Printems, On the discretization in time of parabolic stochastic partial differential equations. ESAIM: M2AN 35 (2001) 1055–1078. [CrossRef] [EDP Sciences] [Google Scholar]
  24. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems, Spriger Series in Computational Mathematics 25. Springer-Verlag, Berlin-Heidelberg, Germany (1997). [Google Scholar]
  25. Y. Yan, Error analysis and smothing properies of discretized deterministic and stochastic parabolic problems. Ph.D. Thesis, Department of Computational Mathematics, Chalmers University of Technology and Göteborg University, Göteborg, Sweden (2003). [Google Scholar]
  26. Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise. BIT 44 (2004) 829–847. [CrossRef] [MathSciNet] [Google Scholar]
  27. Y. Yan, Galerkin finite element methods for stochastic parabolic partial differential equations. SIAM J. Numer. Anal. 43 (2005) 1363–1384. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.B. Walsh, An introduction to stochastic partial differential equations., Lecture Notes in Mathematics 1180. Springer Verlag, Berlin-Heidelberg, Germany (1986) 265–439. [Google Scholar]
  29. J.B. Walsh, Finite element methods for parabolic stochastic PDEs. Potential Anal. 23 (2005) 1–43. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you