Free Access
Issue
ESAIM: M2AN
Volume 44, Number 2, March-April 2010
Page(s) 251 - 287
DOI https://doi.org/10.1051/m2an/2010002
Published online 27 January 2010
  1. G. Ansanay-Alex, F. Babik, J.-C. Latché and D. Vola, An L2–stable approximation of the Navier–Stokes advection operator for low-order non-conforming finite elements. IJNMF (to appear). [Google Scholar]
  2. M. Baudin, Ch. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411–440. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Baudin, F. Coquel and Q.-H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914–936 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Becker, A. Sokolichin and G. Eigenberger, Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chem. Eng. Sci. 49 (1994) 5747–5762. [CrossRef] [Google Scholar]
  5. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). [Google Scholar]
  6. G. Chanteperdrix, Modélisation et simulation numérique d'écoulements diphasiques à interface libre. Application à l'étude des mouvements de liquides dans les réservoirs de véhicules spatiaux. Energétique et dynamique des fluides, École Nationale Supérieure de l'Aéronautique et de l'Espace, France (2004). [Google Scholar]
  7. P.G. Ciarlet, Finite elements methods – Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–351. [Google Scholar]
  8. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue Française d'Automatique, Informatique et Recherche Opérationnelle (R.A.I.R.O.) 3 (1973) 33–75. [Google Scholar]
  9. K. Deimling, Nonlinear Functional Analysis. Springer, New York, USA (1980). [Google Scholar]
  10. S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674–701. [CrossRef] [Google Scholar]
  11. S. Evje and K.K. Fjelde, On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497–1530. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Eymard, T Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis I, P. Ciarlet and J.L. Lions Eds., North Holland (2000) 713–1020. [Google Scholar]
  14. T. Flåtten and S.T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735–764. [CrossRef] [EDP Sciences] [Google Scholar]
  15. T. Gallouet, J.-M. Hérard and N. Seguin, A hybrid scheme to compute contact discontinuities in one dimensional Euler systems. ESAIM: M2AN 36 (2003) 1133–1159. [CrossRef] [EDP Sciences] [Google Scholar]
  16. T. Gallouët, L. Gastaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. [Google Scholar]
  17. T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite-element volume scheme for the compressible Stokes problem. Part I: The isothermal case. Math. Comp. 78 (2009) 1333–1352. [Google Scholar]
  18. L. Gastaldo, R. Herbin and J.-C. Latché, A pressure correction scheme for the homogeneous two-phase flow model with two barotropic phases, in Finite Volumes for Complex Applications V – Problems and Perspectives – Aussois, France (2008) 447–454. [Google Scholar]
  19. L. Gastaldo, R. Herbin and J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. (2009) doi:10.1093/imanum/drp006. [Google Scholar]
  20. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Eng. 195 (2006) 6011–6045. [Google Scholar]
  22. H. Guillard and F. Duval, A Darcy law for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288–313. [CrossRef] [MathSciNet] [Google Scholar]
  23. F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197–213. [CrossRef] [Google Scholar]
  24. D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows, in 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22–24 September (2004). [Google Scholar]
  25. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 59–84. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.L. Lions Eds., North Holland (1998). [Google Scholar]
  27. J.-M. Masella, I. Faille and T. Gallouët, On an approximate Godunov scheme. Int. J. Comput. Fluid Dyn. 12 (1999) 133–149. [Google Scholar]
  28. F. Moukalled, M. Darwish and B. Sekar, A pressure-based algorithm for multi-phase flow at all speeds. J. Comput. Phys. 190 (2003) 550–571. [CrossRef] [Google Scholar]
  29. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Part. Differ. Equ. 8 (1992) 97–111. [Google Scholar]
  30. J.E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455–477. [CrossRef] [MathSciNet] [Google Scholar]
  31. A. Sokolichin and G. Eigenberger, Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations. Chem. Eng. Sci. 54 (1999) 2273–2284. [CrossRef] [Google Scholar]
  32. A. Sokolichin, G. Eigenberger and A. Lapin, Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 50 (2004) 24–45. [CrossRef] [Google Scholar]
  33. B. Spalding, Numerical computation of multi-phase fluid flow and heat transfer, in Recent Advances in Numerical Methods in Fluids 1, Swansea, Pineridge Press (1980) 139–168. [Google Scholar]
  34. P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you