Free Access
Issue
ESAIM: M2AN
Volume 44, Number 2, March-April 2010
Page(s) 207 - 230
DOI https://doi.org/10.1051/m2an/2009044
Published online 16 December 2009
  1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows, Theory, algorithms, and applications. Prentice Hall Inc., Englewood Cliffs, USA (1993). [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, USA (2000). [Google Scholar]
  3. Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surfaces via graph cuts, in International Conference on Computer Vision (2003) 26–33. [Google Scholar]
  4. Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1124–1137. [Google Scholar]
  5. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford, UK (2002). [Google Scholar]
  6. A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84 (2009) 288–307. [CrossRef] [Google Scholar]
  7. W.H. Cunningham, On submodular function minimization. Combinatoria 5 (1985) 185–192. [CrossRef] [Google Scholar]
  8. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc., Boston, USA (1993). [Google Scholar]
  9. H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York, USA (1969). [Google Scholar]
  10. E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics 80. Birkhäuser Verlag, Basel, Switzerland (1984). [Google Scholar]
  11. D.M. Greig, B.T. Porteous and A.H. Seheult, Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51 (1989) 271–279. [Google Scholar]
  12. S. Iwata, L. Fleischer and S. Fujishige, A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions, in Proceedings of the 32nd annual ACM symposium on Theory of computing, ACM (2000) 97–106. [Google Scholar]
  13. L. Lovász, Submodular functions and convexity, in Mathematical programming: the state of the art (Bonn, 1982), Springer, Berlin, Germany (1983) 235–257. [Google Scholar]
  14. J.C. Picard and H.D. Ratliff, Minimum cuts and related problems. Networks 5 (1975) 357–370. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory (B) 80 (2000) 436–355. [Google Scholar]
  16. A. Visintin, Nonconvex functionals related to multiphase systems. SIAM J. Math. Anal. 21 (1990) 1281–1304. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Visintin, Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8 (1991) 175–201. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you