Free Access
Issue
ESAIM: M2AN
Volume 44, Number 2, March-April 2010
Page(s) 231 - 250
DOI https://doi.org/10.1051/m2an/2010001
Published online 27 January 2010
  1. S. Agmon, Lectures on Elliptic Boundary Value Problems. Van Nostrand, USA (1965). [Google Scholar]
  2. M. Amara and J.M. Thomas, Equilibrium finite elements for the linear elastic problem. Numer. Math. 33 (1979) 367–383. [CrossRef] [MathSciNet] [Google Scholar]
  3. D.N. Arnold, F. Brezzi and J. Douglas Jr., PEERS: A new mixed finite element for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  4. D.N. Arnold, R.S. Falk and R. Winther, Differential complexes and stability of finite element methods II: the elasticity complex, in Compatible Spatial Discretizations, D. Arnold, P. Botchev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer-Verlag (2005) 47–67. [Google Scholar]
  5. D.N. Arnold, R.S. Falk and R. Winther, Mixed finite element methods for linear elasticity with weakly imposed symmetry. Math. Comp. 76 (2007) 1699–1723. [Google Scholar]
  6. L. Beirão da Veiga, A residual based error estimator for the Mimetic Finite Difference method. Numer. Math. 108 (2008) 387–406. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Beirão da Veiga and G. Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems with general diffusion tensors. Int. J. Num. Meth. Engrg. 76 (2008) 1696–1723. [Google Scholar]
  8. L. Beirão da Veiga and G. Manzini, A higher-order formulation of the Mimetic Finite Difference method. SIAM J. Sci. Comput. 31 (2008) 732–760. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Beirão da Veiga, K. Lipnikov and G. Manzini, Convergence analysis of the high-order mimetic finite difference method. Numer. Math. 113 (2009) 325–356. [CrossRef] [MathSciNet] [Google Scholar]
  10. L. Beirão da Veiga, V. Gyrya, K. Lipnikov and G. Manzini, A mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228 (2009) 7215–7232. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Berndt, K. Lipnikov, J.D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. J. Numer. Math. 9 (2001) 253–284. [Google Scholar]
  12. M. Berndt, K. Lipnikov, M. Shashkov, M.F. Wheeler and I. Yotov, Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer. Anal. 43 (2005) 1728–1749. [Google Scholar]
  13. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, USA (1991). [Google Scholar]
  14. F. Brezzi, J. Douglas Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Brezzi, D. Boffi and M. Fortin, Reduced symmetry elements in linear elasticity. Comm. Pure Appl. Anal. 8 (2009) 95–121. [Google Scholar]
  16. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [Google Scholar]
  17. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533–1553. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Brezzi, K. Lipnikov and V. Simoncini, Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16 (2006) 275–298. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comp. Meth. Appl. Mech. Engrg. 196 (2007) 3682–3692. [Google Scholar]
  20. A. Cangiani and G. Manzini, Flux recontruction and pressure post-processing in mimetic finite difference methods. Comput. Meth. Appl. Mech. Engrg. 197 (2008) 933–945. [Google Scholar]
  21. P.G. Ciarlet, Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. Amsterdam, North Holland (1988). [Google Scholar]
  22. B.X. Fraejis de Vebeuke, Stress function approach, in World Congress on the Finite Element Method in Structural Mechanics, Bornemouth (1975). [Google Scholar]
  23. V. Gryrya and K. Lipnikov, High-order mimetic finite difference method for the diffusion problems on polygonal meshes. J. Comput. Phys. 227 (2008) 8841–8854. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Hyman, M. Shashkov and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneus non-isotropic materials. J. Comput. Phys. 132 (1997) 130–148. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Hyman, J. Morel, M. Shashkov and S. Steinberg, Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6 (2002) 333–352. [Google Scholar]
  26. Y. Kuznetsov, K. Lipnikov and M. Shashkov, The mimetic finite difference method on polygonal meshes for diffusion-type problems. Comput. Geosci. 8 (2005) 301–324. [Google Scholar]
  27. K. Lipnikov, J. Morel and M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes. J. Comput. Phys. 199 (2004) 589–597. [CrossRef] [Google Scholar]
  28. K. Lipnikov, M. Shashkov and D. Svyatskiy, The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes. J. Comput. Phys. 211 (2006) 473–491. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Morel, M. Hall and M. Shaskov, A local support-operators diffusion discretization scheme for hexahedral meshes. J. Comput. Phys. 170 (2001) 338–372. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you