Free Access
Issue
ESAIM: M2AN
Volume 44, Number 4, July-August 2010
Page(s) 693 - 713
DOI https://doi.org/10.1051/m2an/2010015
Published online 23 February 2010
  1. J.J.F. Adams and R.A. Fournier, Sobolev spaces. Second edition, Pure and Applied Mathematics Series, Elsevier/Academic Press (2003). [Google Scholar]
  2. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Mathematics & Applications 10. Springer-Verlag (1992). [Google Scholar]
  3. C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. I. Analysis of the system, in Nonlinear partial differential equations and their applications, Collège de France Seminar, Vol. XIV (Paris, 1997/1998), Stud. Math. Appl. 31, Amsterdam, North-Holland (2002) 69–102. [Google Scholar]
  4. C. Bernardi, T. Chacón Rebollo, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. II. Numerical analysis of a spectral discretization. SIAM J. Numer. Anal. 40 (2003) 2368–2394. [CrossRef] [Google Scholar]
  5. C. Bernardi, T. Chacón Rebollo, M. Gómez Mármol, R. Lewandowski and F. Murat, A model for two coupled turbulent fluids. III. Numerical approximation by finite elements. Numer. Math. 98 (2004) 33–66. [MathSciNet] [Google Scholar]
  6. C. Bernardi, T. Chacón Rebollo, F. Hecht and R. Lewandowski, Automatic insertion of a turbulence model in the finite element discretization of the Navier-Stokes Equations. Math. Mod. Meth. Appl. Sci. 19 (2009) 1139–1183. [Google Scholar]
  7. H. Brezis, Analyse Fonctionnelle : Théorie et Applications. Collection “Mathématiques Appliquées pour la Maîtrise”, Masson (1983). [Google Scholar]
  8. F. Brossier and R. Lewandowski, Impact of the variations of the mixing length in a first order turbulent closure system. ESAIM: M2AN 36 (2002) 345–372. [CrossRef] [EDP Sciences] [Google Scholar]
  9. K. Bryan, A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4 (1969) 347–369. [CrossRef] [Google Scholar]
  10. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Fundamentals in single domains. Springer, Berlin, Germany (2006). [Google Scholar]
  11. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods – Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin, Germany (2007). [Google Scholar]
  12. S. Del Pino and O. Pironneau, A fictitious domain based on general pde's solvers, in Proc. ECCOMAS 2001, Swansea, K. Morgan Ed., Wiley (2002). [Google Scholar]
  13. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Germany (1986). [Google Scholar]
  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985). [Google Scholar]
  15. E. Hebey, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes 5. American Mathematical Society, USA (1999). [Google Scholar]
  16. B.E. Launder and D.B. Spalding, Mathematical Modeling of Turbulence. Academic Press, London, UK (1972). [Google Scholar]
  17. J. Lederer and R. Lewandowski, A RANS 3D model with unbounded eddy viscosities. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007) 413–441. [CrossRef] [MathSciNet] [Google Scholar]
  18. R. Lewandowski, Analyse Mathématique et Océanographie. Collection Recherches en Mathématiques Appliquées, Masson (1997). [Google Scholar]
  19. R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal. 28 (1997) 393–417. [CrossRef] [MathSciNet] [Google Scholar]
  20. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 3, Travaux et Recherches Mathématiques 20. Dunod, Paris, France (1970). [Google Scholar]
  21. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. RAM: Research in Applied Mathematics. Masson, Paris (1994). [Google Scholar]
  22. J. Piquet, Turbulent Flows, Models and Physics. Springer, Germany (1999). [Google Scholar]
  23. D.C. Wilcox, Turbulence Modeling for CFD. Sixth edition, DCW Industries, inc. California, USA (2006). [Google Scholar]
  24. D. Yakoubi, Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you