Free Access
Volume 44, Number 4, July-August 2010
Page(s) 671 - 692
Published online 23 February 2010
  1. H. Bateman, Tables of Integral Transformations, Volume I. McGraw-Hill Book Company, Inc. (1954). [Google Scholar]
  2. W.W. Bell, Special Functions for Scientists and Engineers. Dover Publications, Inc., New York, USA (1968). [Google Scholar]
  3. M. Bonnet, Boundary Integral Equation Methods for Solids and Fluids. John Wiley & Sons Ltd., Chichester, UK (1995). [Google Scholar]
  4. Z. Chen and M. Dravinski, Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources – Part I: A 2D model. Int. J. Numer. Meth. Engrg. 69 (2007) 347–366. [CrossRef] [Google Scholar]
  5. Z. Chen and M. Dravinski, Numerical evaluation of harmonic Green's functions for triclinic half-space with embedded sources – Part II: A 3D model. Int. J. Numer. Meth. Engrg. 69 (2007) 367–389. [CrossRef] [Google Scholar]
  6. P. Colton and R. Kress, Integral Equations Methods in Scattering Theory. John Wiley, New York, USA (1983). [Google Scholar]
  7. J. Dompierre, Équations Intégrales en Axisymétrie Généralisée, Application à la Sismique Entre Puits. Ph.D. Thesis, École Centrale de Paris, France (1993). [Google Scholar]
  8. M. Durán, E. Godoy and J.-C. Nédélec, Computing Green's function of elasticity in a half-plane with impedance boundary condition. C. R. Acad. Sci. Paris, Ser. IIB 334 (2006) 725–731. [Google Scholar]
  9. M. Durán, I. Muga and J.-C. Nédélec, The Helmholtz equation in a locally perturbed half-plane with passive boundary. IMA J. Appl. Math. 71 (2006) 853–876. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Durán, R. Hein and J.-C. Nédélec, Computing numerically the Green's function of the half-plane Helmholtz operator with impedance boundary conditions. Numer. Math. 107 (2007) 295–314. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.R. Franssens, Calculation of the elasto-dynamics Green's function in layered media by means of a modified propagator matrix method. Geophys. J. Roy. Astro. Soc. 75 (1983) 669–691. [Google Scholar]
  12. F.B. Jensen, W.A. Kuperman, M.B. Porter and H. Schmidt, Computational Ocean Acoustics. Springer-Verlag, New York, USA (1994). [Google Scholar]
  13. L.R. Johnson, Green function's for Lamb's Problem. Geophys. J. Roy. Astro. Soc. 37 (1974) 99–131. [Google Scholar]
  14. A.M. Linkov, Boundary Integral Equations in Elasticity Theory. Kluwer Academic Publishers, Dordrecht, Boston (2002). [Google Scholar]
  15. A.M. Linkov, A theory of rupture pulse on softening interface with application to the Chi-Chi earthquake. J. Geophys. Res. 111 (2006) 1–14. [CrossRef] [PubMed] [Google Scholar]
  16. J.-C. Nédélec, Acoustic and Electromagnetic Equations – Integral Representations for Harmonic Problems, Applied Mathematical Sciences 144. Springer, Germany (2001). [Google Scholar]
  17. C. Richter and G. Schmid, A Green's function time-domain boundary element method for the elastodynamic half-plane. Int. J. Numer. Meth. Engrg. 46 (1999) 627–648. [CrossRef] [Google Scholar]
  18. M. Spies, Green's tensor function for Lamb's problem: The general anisotropic case. J. Acoust. Soc. Am. 102 (1997) 2438–2441. [CrossRef] [Google Scholar]
  19. T.R. Stacey and C.H. Page, Practical Handbook for Underground Rock Mechanics, Series on Rock and Soil Mechanics 12. Trans Tech Publications, Germany (1986). [Google Scholar]
  20. C.-Y. Wang and J.D. Achenbach, Lamb's problem for solids of general anisotropy. Wave Mot. 24 (1996) 227–242. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you