Free Access
Issue
ESAIM: M2AN
Volume 44, Number 4, July-August 2010
Page(s) 627 - 646
DOI https://doi.org/10.1051/m2an/2010022
Published online 17 March 2010
  1. G. Amberg, Semi sharp phase-field method for quantitative phase change simulations. Phys. Rev. Lett. 91 (2003) 265505–265509. [CrossRef] [PubMed] [Google Scholar]
  2. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz and R. Trivedi, Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 57 (2009) 941–971. [CrossRef] [Google Scholar]
  3. J.T. Beale and A.J. Majda, Vortex methods. I. Convergence in three dimensions. Math. Comp. 39 (1982) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
  4. W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Phase field simulation of solidification. Ann. Rev. Mater. Res. 32 (2002) 163–194. [CrossRef] [Google Scholar]
  5. E. Burman and J. Rappaz, Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci. 26 (2003) 1137–1160. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Cances, F. Legoll and G. Stolz, Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: M2AN 41 (2007) 351–389. [CrossRef] [EDP Sciences] [Google Scholar]
  7. A. De Masi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994) 633–696. [CrossRef] [MathSciNet] [Google Scholar]
  8. W. E and W. Ren, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press (2002). [Google Scholar]
  10. J. Gooodman, K.-S. Moon, A. Szepessy, R. Tempone and G. Zouraris, Stochastic Differential Equations: Models and Numerics. http://www.math.kth.se/~szepessy/sdepde.pdf. [Google Scholar]
  11. R.J. Hardy, Formulas for determining local properties in molecular dynamics: shock waves. J. Chem. Phys. 76 (1982) 622–628. [CrossRef] [Google Scholar]
  12. J.J. Hoyt, M. Asta and A. Karma, Atomistic and continuum modeling of dendritic solidification. Mat. Sci. Eng. R 41 (2003) 121–163. [CrossRef] [Google Scholar]
  13. J.H. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817–829. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. L.P. Kadanoff, Statistical physics: statics, dynamics and renormalization. World Scientific (2000). [Google Scholar]
  15. A. Karma and W.J. Rappel, Phase-field model of dendritic side branching with thermal noise. Phys Rev. E 60 (1999) 3614–3625. [CrossRef] [Google Scholar]
  16. M. Katsoulakis and A. Szepessy, Stochastic hydrodynamical limits of particle systems. Comm. Math. Sciences 4 (2006) 513–549. [Google Scholar]
  17. P.R. Kramer and A.J. Majda, Stochastic mode reduction for particle-based simulation methods for complex microfluid systems. SIAM J. Appl. Math. 64 (2003) 401–422. [MathSciNet] [Google Scholar]
  18. H. Kroemer and C. Kittel, Thermal Physics. W.H. Freeman Company (1980). [Google Scholar]
  19. L.D. Landau and E.M. Lifshitz, Statistical Physics Part 1. Pergamon Press (1980). [Google Scholar]
  20. T.M. Liggett, Interacting particle systems. Springer-Verlag, Berlin (2005). [Google Scholar]
  21. S. Mas-Gallic and P.-A. Raviart, A particle method for first-order symmetric systems. Numer. Math. 51 (1987) 323–352. [CrossRef] [MathSciNet] [Google Scholar]
  22. G. Morandi, F. Napoli and E. Ercolessi, Statistical Mechanics: An Intermediate Course. World Scientific Publishing (2001). [Google Scholar]
  23. E. Nelson, Dynamical Theories of Brownian Motion. Princeton University Press (1967). [Google Scholar]
  24. S.G. Pavlik and R.J. Sekerka, Forces due to fluctuations in the anisotropic phase-field model of solidification. Physica A 268 (1999) 283–290. [CrossRef] [Google Scholar]
  25. T. Schlick, Molecular modeling and simulation. Springer-Verlag (2002). [Google Scholar]
  26. H.M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka Problem with kinetic undercooling. Arch. Rat. Mech. Anal. 131 (1995) 139–197. [CrossRef] [Google Scholar]
  27. A. Szepessy, R. Tempone and G. Zouraris, Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54 (2001) 1169–1214. [Google Scholar]
  28. N.G. van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland (1981). [Google Scholar]
  29. E. von Schwerin, A Stochastic Phase-Field Model Computed From Coarse-Grained Molecular Dynamics. arXiv:0908.1367, included in [30]. [Google Scholar]
  30. E. von Schwerin, Adaptivity for Stochastic and Partial Differential Equations with Applications th Phase Transformations. Ph.D. Thesis, KTH, Royal Institute of Technology, Stockholm, Sweden (2007). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you