Free Access
Volume 44, Number 4, July-August 2010
Page(s) 647 - 670
Published online 23 February 2010
  1. P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Design 1 (1984) 169–181. [CrossRef] [Google Scholar]
  2. B. Berge, Electrocapillarité et mouillage de films isolants par l'eau. C. R. Acad. Sci. Paris Ser. II 317 (1993) 157. [Google Scholar]
  3. S. Bouchereau, Modelling and numerical simulation of electrowetting. Ph.D. Thesis, Université Grenoble I, France (1997) [in French]. [Google Scholar]
  4. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Series in Computational Mathematics 15. Springer-Verlag (1991). [Google Scholar]
  5. D. Bucur and G. Butazzo, Variational methods in shape optimization problems. Birkhaüser, Boston, USA (2005). [Google Scholar]
  6. J. Buehrle, S. Herminghaus and F. Mugele, Interface profile near three phase contact lines in electric fields. Phys. Rev. Lett. 91 (2003) 086101. [CrossRef] [PubMed] [Google Scholar]
  7. Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542–1570. [Google Scholar]
  8. P. Ciarlet, Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559–586. [Google Scholar]
  9. P. Ciarlet, Jr. and J. He, The Singular Complement Method for 2d problems. C. R. Acad. Sci. Paris Ser. I 336 (2003) 353–358. [Google Scholar]
  10. P. Ciarlet, Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358–365. [Google Scholar]
  11. P. Ciarlet, Jr., F. Lefèvre, S. Lohrengel and S. Nicaise, Weighted regularization for composite materials in electromagnetism. ESAIM: M2AN 44 (2010) 75–108. [CrossRef] [EDP Sciences] [Google Scholar]
  12. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, North Holland (1991) 17–351. [Google Scholar]
  13. M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93 (2002) 239–277. [CrossRef] [MathSciNet] [Google Scholar]
  14. M. Costabel, M. Dauge, D. Martin and G. Vial, Weighted Regularization of Maxwell Equations – Computations in Curvilinear Polygons, in Proceedings of Enumath'01, held in Ischia, Italy (2002). [Google Scholar]
  15. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Meth. Appl. Sci. 7 (1997) 957–991. [CrossRef] [Google Scholar]
  16. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Germany (1986). [Google Scholar]
  17. A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, Mathematics and Applications 48. Springer-Verlag (2005) [in French]. [Google Scholar]
  18. S. Kaddouri, Solution to the electrostatic potential problem in singular (prismatic or axisymmetric) domains. A multi-scale study in quasi-singular domains. Ph.D. Thesis, École Polytechnique, France (2007) [in French]. [Google Scholar]
  19. P. Monk, Finite Elements Methods for Maxwell's equations. Oxford Science Publications, UK (2003). [Google Scholar]
  20. F. Mugele and J.C. Baret, Electrowetting: From basics to applications. J. Phys., Condens. Matter 17 (2005) R705–R774. [Google Scholar]
  21. F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Publication du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), France (1976). [Google Scholar]
  22. J.-C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993). [Google Scholar]
  24. S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395–450. [CrossRef] [MathSciNet] [Google Scholar]
  25. A. Papathanasiou and A. Boudouvis, A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl. Phys. Lett. 86 (2005) 164102. [CrossRef] [Google Scholar]
  26. C. Quilliet and B. Berge, Electrowetting: a recent outbreak. Curr. Opin. Colloid In. 6 (2001) 34–39. [CrossRef] [Google Scholar]
  27. F. Rapetti, Higher order variational discretizations on simplices: applications to numerical electromagnetics. Habilitation à Diriger les Recherches, Université de Nice, France (2008) [in French]. [Google Scholar]
  28. C. Scheid, Theoretical and numerical analysis in the vicinity of the triple point in Electrowetting. Ph.D. Thesis, Université Grenoble I, France (2007) [in French]. [Google Scholar]
  29. C. Scheid and P. Witomski, A proof of the invariance of the contact angle in electrowetting. Math. Comp. Model. 49 (2009) 647–665. [Google Scholar]
  30. T. Sorokina and A.J. Worsey, A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29 (2008) 71–89. [CrossRef] [MathSciNet] [Google Scholar]
  31. M. Vallet, M. Vallade and B. Berge, Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B. 11 (1999) 583. [Google Scholar]
  32. H. Verheijen and M. Prins, Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15 (1999) 6616. [CrossRef] [Google Scholar]
  33. A.J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant. Comp. Aided Geom. Design 5 (1988) 177–186. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you