Free Access
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 885 - 920
Published online 26 August 2010
  1. F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau and T. Salameh, Stochastic downscaling methods: application to wind refinement. Stoch. Environ. Res. Risk. Assess. 23 (2009) 851–859. [CrossRef] [Google Scholar]
  2. M. Bossy, J.-F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models. Research report RR-6761, INRIA, France (2008) [Google Scholar]
  3. M. Bossy, J. Fontbona and J.-F. Jabir, Incompressible Lagrangian stochastic model in the torus. In preparation. [Google Scholar]
  4. J.A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system. Math. Meth. Appl. Sci. 21 (1998) 907–938. [CrossRef] [Google Scholar]
  5. C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67. Springer-Verlag, New York (1988). [Google Scholar]
  6. C. Chauvin, S. Hirstoaga, P. Kabelikova, F. Bernardin and A. Rousseau, Solving the uniform density constraint in a downscaling stochastic model. ESAIM: Proc. 24 (2008) 97–110. [CrossRef] [EDP Sciences] [Google Scholar]
  7. C. Chauvin, F. Bernardin, M. Bossy and A. Rousseau, Wind simulation refinement: some new challenges for particle methods, in Springer Mathematics in Industry series, ECMI (to appear). [Google Scholar]
  8. P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. École Norm. Sup. 19 (1986) 519–542. [Google Scholar]
  9. P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Internal report, École Polytechnique, Palaiseau, France (1985). [Google Scholar]
  10. M. Di Francesco and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type. AMRX Appl. Math. Res. Express 3 (2005) 77–116. [CrossRef] [Google Scholar]
  11. M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Diff. Equ. 11 (2006) 1261–1320. [Google Scholar]
  12. P. Drobinski, J.L. Redelsperger and C. Pietras, Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys. Res. Lett. 33 (2006) L23806. [CrossRef] [Google Scholar]
  13. C.W. Gardiner, Handbook of stochastic methods, Springer Series in Synergetics 13. Second edition, Springer-Verlag (1985). [Google Scholar]
  14. J.-L. Guermond and L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection FEM. J. Comput. Phys. 132 (1997) 12–33. [CrossRef] [MathSciNet] [Google Scholar]
  15. F.H. Harlow and P.I. Nakayama, Transport of turbulence energy decay rate. Technical report (1968) 451. [Google Scholar]
  16. J.-F. Jabir, Lagrangian Stochastic Models of conditional McKean-Vlasov type and their confinements. Ph.D. Thesis, University of Nice-Sophia-Antipolis, France (2008). [Google Scholar]
  17. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). [Google Scholar]
  18. A. Lachal, Les temps de passage successifs de l'intégrale du mouvement brownien. Ann. I.H.P. Probab. Stat. 33 (1997) 1–36. [Google Scholar]
  19. E. Lanconelli, A. Pascucci and S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in Nonlinear problems in mathematical physics and related topics, Int. Math. Ser., Kluwer/Plenum, New York (2002) 243–265. [Google Scholar]
  20. H.P. McKean, Jr, A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227–235. [MathSciNet] [Google Scholar]
  21. J.-P. Minier and E. Peirano, The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 352 (2001) 1–214. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  22. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. Masson, Paris (1994). [Google Scholar]
  23. C.M. Mora, Weak exponential schemes for stochastic differential equations with additive noise. IMA J. Numer. Anal. 25 (2005) 486–506. [CrossRef] [MathSciNet] [Google Scholar]
  24. T. Plewa, T. Linde and V.G. Weirs Eds., Adaptive Mesh Refinement – Theory and Applications, Lecture Notes in Computational Science and Engineering 41. Springer, Chicago (2003). [Google Scholar]
  25. S.B. Pope, P.D.F. methods for turbulent reactive flows. Prog. Energy Comb. Sci. 11 (1985) 119–192. [Google Scholar]
  26. S.B. Pope, On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6 (1993) 973–985. [CrossRef] [Google Scholar]
  27. S.B. Pope, Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26 (1994) 23–63. [Google Scholar]
  28. S.B. Pope, Turbulent flows. Cambridge Univ. Press, Cambridge (2003). [Google Scholar]
  29. P.-A. Raviart, An analysis of particle methods, in Numerical methods in fluid dynamics, Lecture Notes in Mathematics 1127, Springer, Berlin (1985) 243–324. [Google Scholar]
  30. J.L. Redelsperger, F. Mahé and P. Carlotti, A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Bound. Layer Meteor. 101 (2001) 375–408. [CrossRef] [Google Scholar]
  31. A. Rousseau, F. Bernardin, M. Bossy, P. Drobinski and T. Salameh, Stochastic particle method applied to local wind simulation, in Proc. IEEE International Conference on Clean Electrical Power (2007) 526–528. [Google Scholar]
  32. P. Sagaut, Large eddy simulation for incompressible flows – An introduction. Scientific Computation, Springer-Verlag, Berlin (2001). [Google Scholar]
  33. D.W. Stroock and S.R. Varadhan, Multidimensional diffusion processes. Springer-Verlag, Berlin (1979). [Google Scholar]
  34. R.B. Stull, An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Kluwer Academic Publishers (1988). [Google Scholar]
  35. A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX – 1989, Lecture Notes in Mathematics 1464, Springer, Berlin (1991) 165–251. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you