Free Access
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 921 - 945
Published online 26 August 2010
  1. C. Baehr, Modélisation probabiliste des écoulements atmosphériques turbulents afin d'en filtrer la mesure par approche particulaire. Ph.D. Thesis University of Toulouse III – Paul Sabatier, Toulouse Mathematics Institute, France (2008). [Google Scholar]
  2. C. Baehr and F. Legland, Some Mean-Field Processes Filtering using Particles System Approximations. In preparation. [Google Scholar]
  3. C. Baehr and O. Pannekoucke, Some issues and results on the EnKF and particle filters for meteorological models, in Chaotic Systems: Theory and Applications, C.H. Skiadas and I. Dimotikalis Eds., World Scientific (2010). [Google Scholar]
  4. G. BenArous, Flots et séries de Taylor stochastiques. Probab. Theor. Relat. Fields 81 (1989) 29–77. [Google Scholar]
  5. M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles. 2: Application to the Burgers equation. Ann. Appl. Prob. 6 (1996) 818–861. [CrossRef] [Google Scholar]
  6. B. Busnello and F. Flandoli and M. Romito, A probabilistic representation for the vorticity of a 3d viscous fluid and for general systems of parabolic equations. Proc. Edinb. Math. Soc. 48 (2005) 295–336. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Constantin and G. Iyer, A stochastic Lagrangian representation of 3-dimensional incompressible Navier-Stokes equations. Commun. Pure Appl. Math. 61 (2008) 330–345. [CrossRef] [Google Scholar]
  8. S. Das and P. Durbin, A Lagrangian stochastic model for dispersion in stratified turbulence. Phys. Fluids 17 (2005) 025109. [CrossRef] [Google Scholar]
  9. P. Del Moral, Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004). [Google Scholar]
  10. U. Frisch, Turbulence. Cambridge University Press, Cambridge (1995). [Google Scholar]
  11. G. Iyer and J. Mattingly, A stochastic-Lagrangian particle system for the Navier-Stokes equations. Nonlinearity 21 (2008) 2537–2553. [CrossRef] [MathSciNet] [Google Scholar]
  12. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag (1988). [Google Scholar]
  13. S. Méléard, Asymptotic behaviour of some particle systems: McKean Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer-Verlag (1996). [Google Scholar]
  14. R. Mikulevicius and B. Rozovskii, Stochastic Navier-Stokes Equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250–1310. [CrossRef] [MathSciNet] [Google Scholar]
  15. S.B. Pope, Turbulent Flows. Cambridge University Press, Cambridge (2000). [Google Scholar]
  16. A.S. Sznitman, Topics in propagation of chaos, in École d'Eté de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math. 1464, Springer-Verlag (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you