Free Access
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 1085 - 1105
Published online 26 August 2010
  1. F.J. Alexander and A.L. Garcia, The direct simulation Monte Carlo method. Comp. Phys. 11 (1997) 588–593. [Google Scholar]
  2. R.D. Astumian and P. Hanggi, Brownian motors. Phys. Today 55 (2002) 33–39. [CrossRef] [Google Scholar]
  3. F. Baras, G. Nicolis, M.M. Mansour and J.W. Turner, Stochastic theory of adiabatic explosion. J. Statis. Phys. 32 (1983) 1–23. [CrossRef] [Google Scholar]
  4. J.B. Bell, A.L. Garcia and S.A. Williams, Numerical methods for the stochastic Landau-Lifshitz Navier-Stokes equations. Phys. Rev. E 76 (2007) 016708. [CrossRef] [MathSciNet] [Google Scholar]
  5. I. Bena, M.M. Mansour and F. Baras, Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime. Phys. Rev. E 59 (1999) 5503–5510. [CrossRef] [MathSciNet] [Google Scholar]
  6. I. Bena, F. Baras and M.M. Mansour, Hydrodynamic fluctuations in the Kolmogorov flow: Nonlinear regime. Phys. Rev. E 62 (2000) 6560–6570. [CrossRef] [Google Scholar]
  7. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994). [Google Scholar]
  8. M. Bixon and R. Zwanzig, Boltzmann-Langevin equation and hydrodynamic fluctuations. Phys. Rev. 187 (1969) 267–272. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Blömker, S. Maier-Paape and T. Wanner, Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. Trans. Amer. Math. Soc. 360 (2008) 449–489. [CrossRef] [MathSciNet] [Google Scholar]
  10. E. Calzetta, Relativistic fluctuating hydrodynamics. Class. Quantum Grav. 15 (1998) 653–667. [CrossRef] [Google Scholar]
  11. H.D. Ceniceros and G.O. Mohler, A practical splitting method for stiff SDEs with application to problems with small noise. Multiscale Model. Simul. 6 (2007) 212–227. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Cohen, J.W.H. Sutherland and J.M. Deutch, Hydrodynamic correlation functions for binary mixtures. Phys. Chem. Liquids 2 (1971) 213–235. [Google Scholar]
  13. G. De Fabritiis, R. Delgado-Buscalioni and P.V. Coveney, Multiscale modeling of liquids with molecular specificity. Phys. Rev. Lett. 97 (2006) 134501. [CrossRef] [PubMed] [Google Scholar]
  14. G. De Fabritiis, M. Serrano, R. Delgado-Buscalioni and P.V. Coveney, Fluctuating hydrodynamic modeling of fluids at the nanoscale. Phys. Rev. E 75 (2007) 026307. [CrossRef] [Google Scholar]
  15. J.M.O. de Zarate and J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures. Elsevier Science (2007). [Google Scholar]
  16. R. Delgado-Buscalioni and G. De Fabritiis, Embedding molecular dynamics within fluctuating hydrodynamics in multiscale simulations of liquids. Phys. Rev. E 76 (2007) 036709. [CrossRef] [Google Scholar]
  17. J. Eggers, Dynamics of liquid nanojets. Phys. Rev. Lett. 89 (2002) 084502. [CrossRef] [PubMed] [Google Scholar]
  18. P. Español, Stochastic differential equations for non-linear hydrodynamics. Physica A 248 (1998) 77. [CrossRef] [Google Scholar]
  19. R.F. Fox and G.E. Uhlenbeck, Contributions to non-equilibrium thermodynamics. I. Theory of hydrodynamical fluctuations. Phys. Fluids 13 (1970) 1893–1902. [CrossRef] [MathSciNet] [Google Scholar]
  20. A.L. Garcia, Nonequilibrium fluctuations studied by a rarefied gas simulation. Phys. Rev. A 34 (1986) 1454–1457. [CrossRef] [PubMed] [Google Scholar]
  21. A.L. Garcia, Numerical Methods for Physics. Second edition, Prentice Hall (2000). [Google Scholar]
  22. A.L. Garcia, Estimating hydrodynamic quantities in the presence of microscopic fluctuations. Commun. Appl. Math. Comput. Sci. 1 (2006) 53–78. [CrossRef] [MathSciNet] [Google Scholar]
  23. A.L. Garcia and C. Penland, Fluctuating hydrodynamics and principal oscillation pattern analysis. J. Stat. Phys. 64 (1991) 1121–1132. [CrossRef] [Google Scholar]
  24. A.L. Garcia, M.M. Mansour, G. Lie and E. Clementi, Numerical integration of the fluctuating hydrodynamic equations. J. Stat. Phys. 47 (1987) 209–228. [CrossRef] [Google Scholar]
  25. A.L. Garcia, M.M. Mansour, G.C. Lie, M. Mareschal and E. Clementi, Hydrodynamic fluctuations in a dilute gas under shear. Phys. Rev. A 36 (1987) 4348–4355. [CrossRef] [PubMed] [Google Scholar]
  26. G. Giupponi, G. De Fabritiis and P.V. Coveney, Hybrid method coupling fluctuating hydrodynamics and molecular dynamics for the simulation of macromolecules. J. Chem. Phys. 126 (2007) 154903. [CrossRef] [PubMed] [Google Scholar]
  27. J.O. Hirshfelder, C.F. Curtis and R.B. Bird, Molecular Theory of Gases and Liquids. John Wiley & Sons (1954). [Google Scholar]
  28. D.J. Horntrop, Mesoscopic simulation of Ostwald ripening. J. Comp. Phys. 218 (2006) 429–441. [CrossRef] [Google Scholar]
  29. D.J. Horntrop, Spectral method study of domain coarsening. Phys. Rev. E 75 (2007) 046703. [CrossRef] [Google Scholar]
  30. M. Ibañes, J García-Ojalvo, R. Toral and J.M. Sancho, Dynamics and scaling of noise-induced domain growth. Eur. Phys. J. B 18 (2000) 663–673. [CrossRef] [EDP Sciences] [Google Scholar]
  31. K. Kadau, T.C. Germann, N.G. Hadjiconstantinou, P.S. Lomdahl, G. Dimonte, B.L. Holian and B.J. Alder, Nanohydrodynamics simulations: An atomistic view of the Rayleigh-Taylor instability. PNAS 101 (2004) 5851–5855. [Google Scholar]
  32. K. Kadau, C. Rosenblatt, J. Barber, T. Germann, Z. Huang, P. Carlès and B. Alder, The importance of fluctuations in fluid mixing. PNAS 104 (2007) 7741–7745. [Google Scholar]
  33. W. Kang and U. Landman, Universality crossover of the pinch-off shape profiles of collapsing liquid nanobridges in vacuum and gaseous environments. Phys. Rev. Lett. 98 (2007) 064504. [CrossRef] [PubMed] [Google Scholar]
  34. A.L. Kawczynski and B. Nowakowski, Stochastic transitions through unstable limit cycles in a model of bistable thermochemical system. Phys. Chem. Chem. Phys. 10 (2008) 289–296. [CrossRef] [PubMed] [Google Scholar]
  35. G.E. Kelly and M.B. Lewis, Hydrodynamic fluctuations. Phys. Fluids 14 (1971) 1925–1931. [CrossRef] [Google Scholar]
  36. A.M. Lacasta, J.M. Sancho and F. Sagués, Phase separation dynamics under stirring. Phys. Rev. Lett. 75 (1995) 1791–1794. [CrossRef] [PubMed] [Google Scholar]
  37. L.D. Landau and E.M. Lifshitz, Fluid Mechanics, Course of Theoretical Physics 6. Pergamon (1959). [Google Scholar]
  38. L.D. Landau and E.M. Lifshitz, Statistical Physics, Course of Theoretical Physics 5. Pergamon, 3rd edition, part 1st edition (1980). [Google Scholar]
  39. B.M. Law and J.C. Nieuwoudt, Noncritical liquid mixtures far from equilibrium: the Rayleigh line. Phys. Rev. A 40 (1989) 3880–3885. [CrossRef] [PubMed] [Google Scholar]
  40. A. Lemarchand and B. Nowakowski, Fluctuation-induced and nonequilibrium-induced bifurcations in a thermochemical system. Mol. Simulat. 30 (2004) 773–780. [CrossRef] [Google Scholar]
  41. M.M. Mansour, A.L. Garcia, G.C. Lie and E. Clementi, Fluctuating hydrodynamics in a dilute gas. Phys. Rev. Lett. 58 (1987) 874–877. [CrossRef] [PubMed] [Google Scholar]
  42. M.M. Mansour, A.L. Garcia, J.W. Turner and M. Mareschal, On the scattering function of simple fluids in finite systems. J. Stat. Phys. 52 (1988) 295–309. [CrossRef] [Google Scholar]
  43. M.M. Mansour, C. Van den Broeck, I. Bena and F. Baras, Spurious diffusion in particle simulations of the Kolmogorov flow. Europhys. Lett. 47 (1999) 8–13. [CrossRef] [Google Scholar]
  44. M. Mareschal, M.M. Mansour, G. Sonnino and E. Kestemont, Dynamic structure factor in a nonequilibrium fluid: a molecular-dynamics approach. Phys. Rev. A 45 (1992) 7180–7183. [CrossRef] [PubMed] [Google Scholar]
  45. P. Meurs, C. Van den Broeck and A.L. Garcia, Rectification of thermal fluctuations in ideal gases. Phys. Rev. E 70 (2004) 051109. [CrossRef] [Google Scholar]
  46. E. Moro, Hybrid method for simulating front propagation in reaction-diffusion systems. Phys. Rev. E 69 (2004) 060101. [Google Scholar]
  47. M. Moseler and U. Landman, Formation, stability, and breakup of nanojets. Science 289 (2000) 1165–1169. [CrossRef] [PubMed] [Google Scholar]
  48. J.C. Nieuwoudt and B.M. Law, Theory of light scattering by a nonequilibrium binary mixture. Phys. Rev. A 42 (1989) 2003–2014. [CrossRef] [Google Scholar]
  49. B. Nowakowski and A. Lemarchand, Stochastic effects in a thermochemical system with newtonian heat exchange. Phys. Rev. E 64 (2001) 061108. [CrossRef] [Google Scholar]
  50. B. Nowakowski and A. Lemarchand, Sensitivity of explosion to departure from partial equilibrium. Phys. Rev. E 68 (2003) 031105. [CrossRef] [Google Scholar]
  51. G. Oster, Darwin's motors. Nature 417 (2002) 25. [CrossRef] [PubMed] [Google Scholar]
  52. R.K. Pathria, Statistical Mechanics. Butterworth-Heinemann, Oxford (1996). [Google Scholar]
  53. G. Quentin and I. Rehberg, Direct measurement of hydrodynamic fluctuations in a binary mixture. Phys. Rev. Lett. 74 (1995) 1578–1581. [CrossRef] [PubMed] [Google Scholar]
  54. L. Rayleigh, Scientific Papers II. Cambridge University Press, Cambridge (1900) 200–207. [Google Scholar]
  55. R. Schmitz, Fluctuations in nonequilibrium fluids. Phys. Rep. 171 (1988) 1–58. [CrossRef] [Google Scholar]
  56. J.V. Sengers and J.M.O. de Zárate, Thermal fluctuations in non-equilibrium thermodynamics. J. Non-Equilib. Thermodyn. 32 (2007) 319–329. [CrossRef] [Google Scholar]
  57. D.H. Sharp, An overview of Rayleigh-Taylor instability. Phys. D 12 (1984) 3–18. [CrossRef] [Google Scholar]
  58. Y. Sone, Kinetic Theory and Fluid Dynamics. Springer (2002). [Google Scholar]
  59. G.I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. London Ser. A 201 (1950) 192–196. [Google Scholar]
  60. C. Van den Broeck, R. Kawai and P. Meurs, Exorcising a Maxwell demon. Phys. Rev. Lett. 93 (2004) 090601. [CrossRef] [PubMed] [Google Scholar]
  61. N. Vladimirova, A. Malagoli and R. Mauri, Diffusion-driven phase separation of deeply quenched mixtures. Phys. Rev. E 58 (1998) 7691–7699. [CrossRef] [Google Scholar]
  62. S.A. Williams, J.B. Bell and A.L. Garcia, Algorithm refinement for fluctuating hydrodynamics. Multiscale Model. Simul. 6 (2008) 1256–1280. [CrossRef] [Google Scholar]
  63. M. Wu, G. Ahlers and D.S. Cannell, Thermally induced fluctuations below the onset of Rayleigh-Bénard convection. Phys. Rev. Lett. 75 (1995) 1743–1746. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you