Free Access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 1069 - 1083
DOI https://doi.org/10.1051/m2an/2010052
Published online 26 August 2010
  1. F.J. Alexander, A.L. Garcia and B.J. Alder, Cell size dependence of transport coefficients in stochastic particle algorithms. Phys. Fluids 10 (1998) 1540–1542. [CrossRef] [Google Scholar]
  2. H.A. Al-Mohssen, An Excursion with the Boltzmann Equation at Low Speeds: Variance-Reduced DSMC. Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, Cambridge (2010). [Google Scholar]
  3. H.A. Al-Mohssen and N.G. Hadjiconstantinou, Yet Another Variance Reduction Method for Direct Monte Carlo Simulations of Low-Signal Flows, in 26th International Symposium on Rarefied Gas Dynamics, T. Abe Ed., AIP, Kyoto (2008) 257–262. [Google Scholar]
  4. L.L. Baker and N.G. Hadjiconstantinou, Variance reduction for Monte Carlo solutions of the Boltzmann equation. Phys. Fluids 17 (2005) 051703. [CrossRef] [Google Scholar]
  5. L.L. Baker and N.G. Hadjiconstantinou, Variance-reduced particle methods for solving the Boltzmann equation. J. Comput. Theor. Nanosci. 5 (2008) 165–174. [Google Scholar]
  6. L.L. Baker and N.G. Hadjiconstantinou, Variance-reduced Monte Carlo solutions of the Boltzmann equation for low-speed gas flows: A discontinuous Galerkin formulation. Int. J. Numer. Methods Fluids 58 (2008) 381–402. [CrossRef] [Google Scholar]
  7. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press (1994). [Google Scholar]
  8. C. Cercignani, The Boltzmann equation and its applications. Springer-Verlag (1988). [Google Scholar]
  9. C. Cercignani, Mathematical Methods in Kinetic Theory. Plenum Press (1990). [Google Scholar]
  10. C. Cercignani, Slow Rarefied Flows: Theory and Application to Micro-Electro-Mechanical Systems. Springer (2006). [Google Scholar]
  11. J. Chun and D.L. Koch, A direct simulation Monte Carlo method for rarefied gas flows in the limit of small Mach number. Phys. Fluids 17 (2005) 107107. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Doucet and X. Wang, Monte Carlo methods for signal processing: a review in the statistical signal processing context. IEEE Signal Process. Mag. 22 (2005) 152–170. [Google Scholar]
  13. A.L. Garcia and W. Wagner, Time step truncation error in direct simulation Monte Carlo. Phys. Fluids 12 (2000) 2621–2633. [CrossRef] [Google Scholar]
  14. P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer (2004). [Google Scholar]
  15. N.G. Hadjiconstantinou, Analysis of discretization in the direct simulation Monte Carlo. Phys. Fluids 12 (2000) 2634–2638. [CrossRef] [Google Scholar]
  16. N.G. Hadjiconstantinou, The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics. Phys. Fluids 18 (2006) 111301. [CrossRef] [Google Scholar]
  17. N.G. Hadjiconstantinou, A.L. Garcia, M.Z. Bazant and G. He, Statistical error in particle simulations of hydrodynamic phenomena. J. Comput. Phys. 187 (2003) 274–297. [CrossRef] [MathSciNet] [Google Scholar]
  18. T.M.M. Homolle and N.G. Hadjiconstantinou, Low-variance deviational simulation Monte Carlo. Phys. Fluids 19 (2007) 041701. [CrossRef] [Google Scholar]
  19. T.M.M. Homolle and N.G. Hadjiconstantinou, A low-variance deviational simulation Monte Carlo for the Boltzmann equation. J. Comput. Phys. 226 (2007) 2341–2358. [CrossRef] [MathSciNet] [Google Scholar]
  20. C.D. Landon, Weighted Particle Variance Reduction of Direct Simulation Monte Carlo for the Bhatnagar-Gross-Krook Collision Operator. M.S. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, Cambridge (2010). [Google Scholar]
  21. H.C. Ottinger, B.H.A.A. van den Brule and M.A. Hulsen, Brownian configuration fields and variance reduced CONNFFESSIT. J. Non-Newton. Fluid Mech. 70 (1997) 255–261. [CrossRef] [Google Scholar]
  22. W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes. Cambridge University Press (2007). [Google Scholar]
  23. G.A. Radtke and N.G. Hadjiconstantinou, Variance-reduced particle simulation of the Boltzmann transport equation in the relaxation-time approximation. Phys. Rev. E 79 (2009) 056711. [CrossRef] [Google Scholar]
  24. R.Y. Rubinstein, Simulation and the Monte Carlo Method. Wiley (1981). [Google Scholar]
  25. D.W. Scott, Multivariate Density Estimation. John Wiley & Sons (1992). [Google Scholar]
  26. Y. Sone, Kinetic Theory and Fluid Dynamics. Birkhauser (2002). [Google Scholar]
  27. W. Wagner, A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66 (1992) 1011–1044. [NASA ADS] [CrossRef] [Google Scholar]
  28. W. Wagner, Deviational Particle Monte Carlo for the Boltzmann Equation. Monte Carlo Methods Appl. 14 (2008) 191–268. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you